RESUMO
Kidney transplantation causes large perturbations of the immune system. While many studies focus on the allograft, insights into systemic effects are largely missing. Here, we analyzed the systemic immune response in 3 cohorts of kidney transplanted patients. Using serum proteomics, laboratory values, mass cytometry, histological and clinical parameters, inter-patient heterogeneity was leveraged for multi-omic co-variation analysis. We identified circulating immune modules (CIM) that describe extra-renal signatures of co-regulated plasma proteins. CIM are present in nontransplanted controls, in transplant conditions and during rejection. They are enriched in pathways linked to kidney function, extracellular matrix, signaling, and cellular activation. A complex leukocyte response in the blood during allograft quiescence and rejection is associated with CIM activity and CIM-specific cytokines. CIM activity correlates with kidney function including a 2-month prediction. Together, the data suggest a systemic and multi-layered response of transplant immunity that might be insightful for understanding allograft dysfunction and developing translational biomarkers.
Assuntos
Transplante de Rim , Humanos , Rim , Proteínas Sanguíneas , Biomarcadores , Aloenxertos , Rejeição de EnxertoRESUMO
Mutations in OSGEP and four other genes that encode subunits of the KEOPS complex cause Galloway-Mowat syndrome, a severe, inherited kidney-neurological disease. The complex catalyzes an essential posttranscriptional modification of tRNA and its loss of function induces endoplasmic reticulum (ER) stress. Here, using Drosophila melanogaster garland nephrocytes and cultured human podocytes, we aimed to elucidate the molecular pathogenic mechanisms of KEOPS-related glomerular disease and to test pharmacological inhibition of ER stress-related signaling as a therapeutic principle. We found that ATF4, an ER stress-mediating transcription factor, or its fly orthologue Crc, were upregulated in both fly nephrocytes and human podocytes. Knockdown of Tcs3, a fly orthologue of OSGEP, caused slit diaphragm defects, recapitulating the human kidney phenotype. OSGEP cDNA with mutations found in patients lacked the capacity for rescue. Genetic interaction studies in Tcs3-deficient nephrocytes revealed that Crc mediates not only cell injury, but surprisingly also slit diaphragm defects, and that genetic or pharmacological inhibition of Crc activation attenuates both phenotypes. These findings are conserved in human podocytes where ATF4 inhibition improved the viability of podocytes with OSGEP knockdown, with chemically induced ER stress, and where ATF4 target genes and pro-apoptotic gene clusters are upregulated upon OSGEP knockdown. Thus, our data identify ATF4-mediated signaling as a molecular link among ER stress, slit diaphragm defects, and podocyte injury, and our data suggest that modulation of ATF4 signaling may be a potential therapeutic target for certain podocyte diseases.
Assuntos
Nefropatias , Podócitos , Animais , Humanos , Podócitos/patologia , Fatores de Transcrição/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Nefropatias/genética , Nefropatias/patologia , Estresse do Retículo Endoplasmático/genética , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismoRESUMO
PURPOSE: Nephrolithiasis (NL) affects 1 in 11 individuals worldwide, leading to significant patient morbidity. NL is associated with nephrocalcinosis (NC), a risk factor for chronic kidney disease. Causative genetic variants are detected in 11% to 28% of NL and/or NC, suggesting that additional NL/NC-associated genetic loci await discovery. Therefore, we employed genomic approaches to discover novel genetic forms of NL/NC. METHODS: Exome sequencing and directed sequencing of the OXGR1 locus were performed in a worldwide NL/NC cohort. Putatively deleterious, rare OXGR1 variants were functionally characterized. RESULTS: Exome sequencing revealed a heterozygous OXGR1 missense variant (c.371T>G, p.L124R) cosegregating with calcium oxalate NL and/or NC disease in an autosomal dominant inheritance pattern within a multigenerational family with 5 affected individuals. OXGR1 encodes 2-oxoglutarate (α-ketoglutarate [AKG]) receptor 1 in the distal nephron. In response to its ligand AKG, OXGR1 stimulates the chloride-bicarbonate exchanger, pendrin, which also regulates transepithelial calcium transport in cortical connecting tubules. Strong amino acid conservation in orthologs and paralogs, severe in silico prediction scores, and extreme rarity in exome population databases suggested that the variant was deleterious. Interrogation of the OXGR1 locus in 1107 additional NL/NC families identified 5 additional deleterious dominant variants in 5 families with calcium oxalate NL/NC. Rare, potentially deleterious OXGR1 variants were enriched in patients with NL/NC compared with Exome Aggregation Consortium controls (χ2 = 7.117, P = .0076). Wild-type OXGR1-expressing Xenopus oocytes exhibited AKG-responsive Ca2+ uptake. Of 5 NL/NC-associated missense variants, 5 revealed impaired AKG-dependent Ca2+ uptake, demonstrating loss of function. CONCLUSION: Rare, dominant loss-of-function OXGR1 variants are associated with recurrent calcium oxalate NL/NC disease.
Assuntos
Nefrolitíase , Receptores Purinérgicos P2 , Humanos , Oxalato de Cálcio , Nefrolitíase/genética , Mutação de Sentido Incorreto/genética , Transportadores de Sulfato/genética , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismoRESUMO
Mutation of the Cys1 gene underlies the renal cystic disease in the Cys1cpk/cpk (cpk) mouse that phenocopies human autosomal recessive polycystic kidney disease (ARPKD). Cystin, the protein product of Cys1, is expressed in the primary apical cilia of renal ductal epithelial cells. In previous studies, we showed that cystin regulates Myc expression via interaction with the tumor suppressor, necdin. Here, we demonstrate rescue of the cpk renal phenotype by kidney-specific expression of a cystin-GFP fusion protein encoded by a transgene integrated into the Rosa26 locus. In addition, we show that expression of the cystin-GFP fusion protein in collecting duct cells down-regulates expression of Myc in cpk kidneys. Finally, we report the first human patient with an ARPKD phenotype due to homozygosity for a deleterious splicing variant in CYS1. These findings suggest that mutations in Cys1/CYS1 cause an ARPKD phenotype in mouse and human, respectively, and that the renal cystic phenotype in the mouse is driven by overexpression of the Myc proto-oncogene.
Assuntos
Proteínas de Membrana/genética , Rim Policístico Autossômico Recessivo/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Pré-Escolar , Regulação para Baixo , Predisposição Genética para Doença/genética , Variação Genética/genética , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Transgênicos , Rim Policístico Autossômico Recessivo/patologiaRESUMO
Nephrotic syndrome (NS) is a leading cause of chronic kidney disease. We found recessive NOS1AP variants in two families with early-onset NS by exome sequencing. Overexpression of wild-type (WT) NOS1AP, but not cDNA constructs bearing patient variants, increased active CDC42 and promoted filopodia and podosome formation. Pharmacologic inhibition of CDC42 or its effectors, formin proteins, reduced NOS1AP-induced filopodia formation. NOS1AP knockdown reduced podocyte migration rate (PMR), which was rescued by overexpression of WT Nos1ap but not by constructs bearing patient variants. PMR in NOS1AP knockdown podocytes was also rescued by constitutively active CDC42Q61L or the formin DIAPH3 Modeling a NOS1AP patient variant in knock-in human kidney organoids revealed malformed glomeruli with increased apoptosis. Nos1apEx3-/Ex3- mice recapitulated the human phenotype, exhibiting proteinuria, foot process effacement, and glomerulosclerosis. These findings demonstrate that recessive NOS1AP variants impair CDC42/DIAPH-dependent actin remodeling, cause aberrant organoid glomerulogenesis, and lead to a glomerulopathy in humans and mice.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Nefropatias , Síndrome Nefrótica , Podócitos , Actinas/genética , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Forminas/genética , Humanos , Nefropatias/metabolismo , Camundongos , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , Podócitos/metabolismoRESUMO
BACKGROUND: Galloway-Mowat syndrome (GAMOS) is characterized by neurodevelopmental defects and a progressive nephropathy, which typically manifests as steroid-resistant nephrotic syndrome. The prognosis of GAMOS is poor, and the majority of children progress to renal failure. The discovery of monogenic causes of GAMOS has uncovered molecular pathways involved in the pathogenesis of disease. METHODS: Homozygosity mapping, whole-exome sequencing, and linkage analysis were used to identify mutations in four families with a GAMOS-like phenotype, and high-throughput PCR technology was applied to 91 individuals with GAMOS and 816 individuals with isolated nephrotic syndrome. In vitro and in vivo studies determined the functional significance of the mutations identified. RESULTS: Three biallelic variants of the transcriptional regulator PRDM15 were detected in six families with proteinuric kidney disease. Four families with a variant in the protein's zinc-finger (ZNF) domain have additional GAMOS-like features, including brain anomalies, cardiac defects, and skeletal defects. All variants destabilize the PRDM15 protein, and the ZNF variant additionally interferes with transcriptional activation. Morpholino oligonucleotide-mediated knockdown of Prdm15 in Xenopus embryos disrupted pronephric development. Human wild-type PRDM15 RNA rescued the disruption, but the three PRDM15 variants did not. Finally, CRISPR-mediated knockout of PRDM15 in human podocytes led to dysregulation of several renal developmental genes. CONCLUSIONS: Variants in PRDM15 can cause either isolated nephrotic syndrome or a GAMOS-type syndrome on an allelic basis. PRDM15 regulates multiple developmental kidney genes, and is likely to play an essential role in renal development in humans.
Assuntos
Proteínas de Ligação a DNA/genética , Hérnia Hiatal/genética , Microcefalia/genética , Mutação de Sentido Incorreto , Nefrose/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Pré-Escolar , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/deficiência , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Modelos Moleculares , Síndrome Nefrótica/genética , Podócitos/metabolismo , Polimorfismo de Nucleotídeo Único , Pronefro/embriologia , Pronefro/metabolismo , Estabilidade Proteica , Fatores de Transcrição/química , Fatores de Transcrição/deficiência , Xenopus laevis/embriologia , Xenopus laevis/genética , Dedos de Zinco/genéticaRESUMO
The discovery of >60 monogenic causes of nephrotic syndrome (NS) has revealed a central role for the actin regulators RhoA/Rac1/Cdc42 and their effectors, including the formin INF2. By whole-exome sequencing (WES), we here discovered bi-allelic variants in the formin DAAM2 in four unrelated families with steroid-resistant NS. We show that DAAM2 localizes to the cytoplasm in podocytes and in kidney sections. Further, the variants impair DAAM2-dependent actin remodeling processes: wild-type DAAM2 cDNA, but not cDNA representing missense variants found in individuals with NS, rescued reduced podocyte migration rate (PMR) and restored reduced filopodia formation in shRNA-induced DAAM2-knockdown podocytes. Filopodia restoration was also induced by the formin-activating molecule IMM-01. DAAM2 also co-localizes and co-immunoprecipitates with INF2, which is intriguing since variants in both formins cause NS. Using in vitro bulk and TIRF microscopy assays, we find that DAAM2 variants alter actin assembly activities of the formin. In a Xenopus daam2-CRISPR knockout model, we demonstrate actin dysregulation in vivo and glomerular maldevelopment that is rescued by WT-DAAM2 mRNA. We conclude that DAAM2 variants are a likely cause of monogenic human SRNS due to actin dysregulation in podocytes. Further, we provide evidence that DAAM2-associated SRNS may be amenable to treatment using actin regulating compounds.
Assuntos
Actinas/metabolismo , Variação Genética , Proteínas dos Microfilamentos/genética , Síndrome Nefrótica/genética , Proteínas rho de Ligação ao GTP/genética , Alelos , Animais , Animais Geneticamente Modificados , Movimento Celular/genética , Citoplasma/metabolismo , Forminas/metabolismo , Humanos , Rim/metabolismo , Glomérulos Renais/metabolismo , Mutação de Sentido Incorreto , Podócitos/metabolismo , Pseudópodes/metabolismo , RNA Interferente Pequeno/metabolismo , Sequenciamento do Exoma , XenopusRESUMO
Biallelic mutations in MAPKBP1 were recently associated with late-onset cilia-independent nephronophthisis. MAPKBP1 was found at mitotic spindle poles but could not be detected at primary cilia or centrosomes. Here, by identification and characterization of novel MAPKBP1 variants, we aimed at further investigating its role in health and disease. Genetic analysis was done by exome sequencing, homozygosity mapping, and a targeted kidney gene panel while coimmunoprecipitation was used to explore wild-type and mutant protein-protein interactions. Expression of MAPKBP1 in non-ciliated HeLa and ciliated inner medullary collecting duct cells enabled co-localization studies by fluorescence microscopy. By next generation sequencing, we identified two novel homozygous MAPKBP1 splice-site variants in patients with nephronophthisis-related chronic kidney disease. Splice-site analyses revealed truncation of C-terminal coiled-coil domains and patient-derived deletion constructs lost their ability to homodimerize and heterodimerize with paralogous WDR62. While wild-type MAPKBP1 exhibited centrosomal, basal body, and microtubule association, mutant proteins lost the latter and showed reduced recruitment to cell cycle dependent centriolar structures. Wild-type and mutant proteins had no reciprocal influence upon co-expression excluding dominant negative effects. Thus, MAPKBP1 appears to be a novel microtubule-binding protein with cell cycle dependent centriolar localization. Truncation of its coiled-coil domain is enough to abrogate its dimerization and results in severely disturbed intracellular localizations. Delineating the impact of impaired dimerization on cell cycle regulation and intracellular kidney signaling may provide new insights into common mechanisms of kidney degeneration. Thus, due to milder clinical presentation, MAPKBP1-associated nephronophthisis should be considered in adult patients with otherwise unexplained chronic kidney disease.
Assuntos
Centrossomo , Doenças Renais Policísticas , Adulto , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Cílios/metabolismo , Dimerização , Fibrose , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas do Tecido Nervoso/metabolismo , Doenças Renais Policísticas/metabolismoRESUMO
N6-threonyl-carbamoylation of adenosine 37 of ANN-type tRNAs (t6A) is a universal modification essential for translational accuracy and efficiency. The t6A pathway uses two sequentially acting enzymes, YRDC and OSGEP, the latter being a subunit of the multiprotein KEOPS complex. We recently identified mutations in genes encoding four out of the five KEOPS subunits in children with Galloway-Mowat syndrome (GAMOS), a clinically heterogeneous autosomal recessive disease characterized by early-onset steroid-resistant nephrotic syndrome and microcephaly. Here we show that mutations in YRDC cause an extremely severe form of GAMOS whereas mutations in GON7, encoding the fifth KEOPS subunit, lead to a milder form of the disease. The crystal structure of the GON7/LAGE3/OSGEP subcomplex shows that the intrinsically disordered GON7 protein becomes partially structured upon binding to LAGE3. The structure and cellular characterization of GON7 suggest its involvement in the cellular stability and quaternary arrangement of the KEOPS complex.
Assuntos
Adenosina/análogos & derivados , Proteínas de Ligação ao GTP/genética , Hérnia Hiatal/genética , Proteínas Intrinsicamente Desordenadas/genética , Microcefalia/genética , Nefrose/genética , Proteínas Nucleares/genética , RNA de Transferência/genética , Proteínas de Ligação a RNA/genética , Adenosina/genética , Criança , Feminino , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Masculino , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismoRESUMO
Nephrolithiasis (NL) affects 1 in 11 individuals worldwide and causes significant patient morbidity. We previously demonstrated a genetic cause of NL can be identified in 11-29% of pre-dominantly American and European stone formers. Pakistan, which resides within the Afro-Asian stone belt, has a high prevalence of nephrolithiasis (12%) as well as high rate of consanguinity (> 50%). We recruited 235 Pakistani subjects hospitalized for nephrolithiasis from five tertiary hospitals in the Punjab province of Pakistan. Subjects were surveyed for age of onset, NL recurrence, and family history. We conducted high-throughput exon sequencing of 30 NL disease genes and variant analysis to identify monogenic causative mutations in each subject. We detected likely causative mutations in 4 of 30 disease genes, yielding a likely molecular diagnosis in 7% (17 of 235) of NL families. Only 1 of 17 causative mutations was identified in an autosomal recessive disease gene. 10 of the 12 detected mutations were novel mutations (83%). SLC34A1 was most frequently mutated (12 of 17 solved families). We observed a higher frequency of causative mutations in subjects with a positive NL family history (13/109, 12%) versus those with a negative family history (4/120, 3%). Five missense SLC34A1 variants identified through genetic analysis demonstrated defective phosphate transport. We examined the monogenic causes of NL in a novel geographic cohort and most frequently identified dominant mutations in the sodium-phosphate transporter SLC34A1 with functional validation.
Assuntos
Perfilação da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Nefrolitíase/epidemiologia , Nefrolitíase/genética , Adolescente , Adulto , Idoso , Alelos , Animais , Criança , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Família , Feminino , Perfilação da Expressão Gênica/métodos , Genótipo , Geografia Médica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Paquistão/epidemiologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Xenopus laevis , Adulto JovemRESUMO
Approximately 500 monogenic causes of chronic kidney disease (CKD) have been identified, mainly in pediatric populations. The frequency of monogenic causes among adults with CKD has been less extensively studied. To determine the likelihood of detecting monogenic causes of CKD in adults presenting to nephrology services in Ireland, we conducted whole exome sequencing (WES) in a multi-centre cohort of 114 families including 138 affected individuals with CKD. Affected adults were recruited from 78 families with a positive family history, 16 families with extra-renal features, and 20 families with neither a family history nor extra-renal features. We detected a pathogenic mutation in a known CKD gene in 42 of 114 families (37%). A monogenic cause was identified in 36% of affected families with a positive family history of CKD, 69% of those with extra-renal features, and only 15% of those without a family history or extra-renal features. There was no difference in the rate of genetic diagnosis in individuals with childhood versus adult onset CKD. Among the 42 families in whom a monogenic cause was identified, WES confirmed the clinical diagnosis in 17 (40%), corrected the clinical diagnosis in 9 (22%), and established a diagnosis for the first time in 16 families referred with CKD of unknown etiology (38%). In this multi-centre study of adults with CKD, a molecular genetic diagnosis was established in over one-third of families. In the evolving era of precision medicine, WES may be an important tool to identify the cause of CKD in adults.
Assuntos
Sequenciamento do Exoma , Predisposição Genética para Doença , Testes Genéticos/métodos , Insuficiência Renal Crônica/genética , Adolescente , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Exoma/genética , Feminino , Humanos , Irlanda , Rim , Masculino , Anamnese , Pessoa de Meia-Idade , Mutação , Linhagem , Medicina de Precisão , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/terapia , Adulto JovemRESUMO
BACKGROUND: Whole-exome sequencing (WES) finds a CKD-related mutation in approximately 20% of patients presenting with CKD before 25 years of age. Although provision of a molecular diagnosis could have important implications for clinical management, evidence is lacking on the diagnostic yield and clinical utility of WES for pediatric renal transplant recipients. METHODS: To determine the diagnostic yield of WES in pediatric kidney transplant recipients, we recruited 104 patients who had received a transplant at Boston Children's Hospital from 2007 through 2017, performed WES, and analyzed results for likely deleterious variants in approximately 400 genes known to cause CKD. RESULTS: By WES, we identified a genetic cause of CKD in 34 out of 104 (32.7%) transplant recipients. The likelihood of detecting a molecular genetic diagnosis was highest for patients with urinary stone disease (three out of three individuals), followed by renal cystic ciliopathies (seven out of nine individuals), steroid-resistant nephrotic syndrome (nine out of 21 individuals), congenital anomalies of the kidney and urinary tract (ten out of 55 individuals), and chronic glomerulonephritis (one out of seven individuals). WES also yielded a molecular diagnosis for four out of nine individuals with ESRD of unknown etiology. The WES-related molecular genetic diagnosis had implications for clinical care for five patients. CONCLUSIONS: Nearly one third of pediatric renal transplant recipients had a genetic cause of their kidney disease identified by WES. Knowledge of this genetic information can help guide management of both transplant patients and potential living related donors.
Assuntos
Sequenciamento do Exoma/métodos , Transplante de Rim/métodos , Medicina de Precisão/métodos , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/cirurgia , Adolescente , Boston , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Predisposição Genética para Doença/epidemiologia , Testes Genéticos/métodos , Rejeição de Enxerto , Sobrevivência de Enxerto , Hospitais Pediátricos , Humanos , Transplante de Rim/efeitos adversos , Masculino , Prognóstico , Insuficiência Renal Crônica/fisiopatologia , Estudos Retrospectivos , Medição de Risco , Índice de Gravidade de Doença , Análise de Sobrevida , Transplantados/estatística & dados numéricos , Resultado do TratamentoRESUMO
Nephronophthisis-related ciliopathies (NPHP-RCs) are a group of inherited diseases that are associated with defects in primary cilium structure and function. To identify genes mutated in NPHP-RC, we performed homozygosity mapping and whole-exome sequencing for >100 individuals, some of whom were single affected individuals born to consanguineous parents and some of whom were siblings of indexes who were also affected by NPHP-RC. We then performed high-throughput exon sequencing in a worldwide cohort of 800 additional families affected by NPHP-RC. We identified two ADAMTS9 mutations (c.4575_4576del [p.Gln1525Hisfs∗60] and c.194C>G [p.Thr65Arg]) that appear to cause NPHP-RC. Although ADAMTS9 is known to be a secreted extracellular metalloproteinase, we found that ADAMTS9 localized near the basal bodies of primary cilia in the cytoplasm. Heterologously expressed wild-type ADAMTS9, in contrast to mutant proteins detected in individuals with NPHP-RC, localized to the vicinity of the basal body. Loss of ADAMTS9 resulted in shortened cilia and defective sonic hedgehog signaling. Knockout of Adamts9 in IMCD3 cells, followed by spheroid induction, resulted in defective lumen formation, which was rescued by an overexpression of wild-type, but not of mutant, ADAMTS9. Knockdown of adamts9 in zebrafish recapitulated NPHP-RC phenotypes, including renal cysts and hydrocephalus. These findings suggest that the identified mutations in ADAMTS9 cause NPHP-RC and that ADAMTS9 is required for the formation and function of primary cilia.
Assuntos
Proteína ADAMTS9/genética , Ciliopatias/genética , Mutação , Doenças Renais Policísticas/genética , Proteína ADAMTS9/metabolismo , Animais , Cílios/patologia , Ciliopatias/patologia , Feminino , Humanos , Masculino , Fenótipo , Doenças Renais Policísticas/patologia , Esferoides Celulares , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
BACKGROUND: Nephrotic syndrome (NS), a chronic kidney disease, is characterized by significant loss of protein in the urine causing hypoalbuminemia and edema. In general, â¼15% of childhood-onset cases do not respond to steroid therapy and are classified as steroid-resistant NS (SRNS). In â¼30% of cases with SRNS, a causative mutation can be detected in one of 44 monogenic SRNS genes. The gene LAMA5 encodes laminin-α5, an essential component of the glomerular basement membrane. Mice with a hypomorphic mutation in the orthologous gene Lama5 develop proteinuria and hematuria. METHODS: To identify additional monogenic causes of NS, we performed whole exome sequencing in 300 families with pediatric NS. In consanguineous families we applied homozygosity mapping to identify genomic candidate loci for the underlying recessive mutation. RESULTS: In three families, in whom mutations in known NS genes were excluded, but in whom a recessive, monogenic cause of NS was strongly suspected based on pedigree information, we identified homozygous variants of unknown significance (VUS) in the gene LAMA5. While all affected individuals had nonsyndromic NS with an early onset of disease, their clinical outcome and response to immunosuppressive therapy differed notably. CONCLUSION: We here identify recessive VUS in the gene LAMA5 in patients with partially treatment-responsive NS. More data will be needed to determine the impact of these VUS in disease management. However, familial occurrence of disease, data from genetic mapping and a mouse model that recapitulates the NS phenotypes suggest that these genetic variants may be inherited factors that contribute to the development of NS in pediatric patients.
Assuntos
Sequenciamento do Exoma/métodos , Imunossupressores/uso terapêutico , Laminina/genética , Mutação , Síndrome Nefrótica/genética , Adolescente , Adulto , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/patologia , Linhagem , Fenótipo , Prognóstico , Adulto JovemRESUMO
BACKGROUND: Alport syndrome (AS) and atypical hemolytic-uremic syndrome (aHUS) are rare forms of chronic kidney disease (CKD) that can lead to a severe decline of renal function. Steroid-resistant nephrotic syndrome (SRNS) is more common than AS and aHUS and causes 10% of childhood-onset CKD. In recent years, multiple monogenic causes of AS, aHUS and SRNS have been identified, but their relative prevalence has yet to be studied together in a typical pediatric cohort of children with proteinuria and hematuria. We hypothesized that identification of causative mutations by whole exome sequencing (WES) in known monogenic nephritis and nephrosis genes would allow distinguishing nephritis from nephrosis in a typical pediatric group of patients with both proteinuria and hematuria at any level. METHODS: We therefore conducted an exon sequencing (WES) analysis for 11 AS, aHUS and thrombotic thrombocytopenic purpura-causing genes in an international cohort of 371 patients from 362 families presenting with both proteinuria and hematuria before age 25 years. In parallel, we conducted either WES or high-throughput exon sequencing for 23 SRNS-causing genes in all patients. RESULTS: We detected pathogenic mutations in 18 of the 34 genes analyzed, leading to a molecular diagnosis in 14.1% of families (51 of 362). Disease-causing mutations were detected in 3 AS-causing genes (4.7%), 3 aHUS-causing genes (1.4%) and 12 NS-causing genes (8.0%). We observed a much higher mutation detection rate for monogenic forms of CKD in consanguineous families (35.7% versus 10.1%). CONCLUSIONS: We present the first estimate of relative frequency of inherited AS, aHUS and NS in a typical pediatric cohort with proteinuria and hematuria. Important therapeutic and preventative measures may result from mutational analysis in individuals with proteinuria and hematuria.
Assuntos
Sequenciamento do Exoma/métodos , Marcadores Genéticos , Mutação , Nefrite/diagnóstico , Nefrite/genética , Nefrose/diagnóstico , Nefrose/genética , Adolescente , Síndrome Hemolítico-Urêmica Atípica/diagnóstico , Síndrome Hemolítico-Urêmica Atípica/genética , Criança , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Diagnóstico Diferencial , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Síndrome Nefrótica/diagnóstico , Síndrome Nefrótica/genética , PrognósticoRESUMO
Steroid-resistant nephrotic syndrome (SRNS) almost invariably progresses to end-stage renal disease. Although more than 50 monogenic causes of SRNS have been described, a large proportion of SRNS remains unexplained. Recently, it was discovered that mutations of NUP93 and NUP205, encoding 2 proteins of the inner ring subunit of the nuclear pore complex (NPC), cause SRNS. Here, we describe mutations in genes encoding 4 components of the outer rings of the NPC, namely NUP107, NUP85, NUP133, and NUP160, in 13 families with SRNS. Using coimmunoprecipitation experiments, we showed that certain pathogenic alleles weakened the interaction between neighboring NPC subunits. We demonstrated that morpholino knockdown of nup107, nup85, or nup133 in Xenopus disrupted glomerulogenesis. Re-expression of WT mRNA, but not of mRNA reflecting mutations from SRNS patients, mitigated this phenotype. We furthermore found that CRISPR/Cas9 knockout of NUP107, NUP85, or NUP133 in podocytes activated Cdc42, an important effector of SRNS pathogenesis. CRISPR/Cas9 knockout of nup107 or nup85 in zebrafish caused developmental anomalies and early lethality. In contrast, an in-frame mutation of nup107 did not affect survival, thus mimicking the allelic effects seen in humans. In conclusion, we discovered here that mutations in 4 genes encoding components of the outer ring subunits of the NPC cause SRNS and thereby provide further evidence that specific hypomorphic mutations in these essential genes cause a distinct, organ-specific phenotype.
Assuntos
Síndrome Nefrótica/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Síndrome Nefrótica/genética , Síndrome Nefrótica/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Xenopus/genética , Xenopus laevis , Peixe-Zebra , Proteínas de Peixe-Zebra/genéticaRESUMO
Galloway-Mowat syndrome (GAMOS) is a phenotypically heterogeneous disorder characterized by neurodevelopmental defects combined with renal-glomerular disease, manifesting with proteinuria. To identify additional monogenic disease causes, we here performed whole exome sequencing (WES), linkage analysis, and homozygosity mapping in three affected siblings of an Indian family with GAMOS. Applying established criteria for variant filtering, we identify a novel homozygous splice site mutation in the gene WDR4 as the likely disease-causing mutation in this family. In line with previous reports, we observe growth deficiency, microcephaly, developmental delay, and intellectual disability as phenotypic features resulting from WDR4 mutations. However, the newly identified allele additionally gives rise to proteinuria and nephrotic syndrome, a phenotype that was never reported in patients with WDR4 mutations. Our data thus expand the phenotypic spectrum of WDR4 mutations by demonstrating that, depending on the specific mutated allele, a renal phenotype may be present. This finding suggests that GAMOS may occupy a phenotypic spectrum with other microcephalic diseases. Furthermore, WDR4 is an additional example of a gene that encodes a tRNA modifying enzyme and gives rise to GAMOS, if mutated. Our findings thereby support the recent observation that, like neurons, podocytes of the renal glomerulus are particularly vulnerable to cellular defects resulting from altered tRNA modifications.
Assuntos
Proteínas de Ligação ao GTP/genética , Hérnia Hiatal/genética , Microcefalia/genética , Mutação , Nefrose/genética , Adolescente , Criança , Pré-Escolar , Genes Recessivos , Humanos , Sequenciamento do ExomaRESUMO
Nephronophthisis (NPH) is an autosomal recessive renal disease leading to kidney failure in children and young adults. The protein products of the corresponding genes (NPHPs) are localized in primary cilia or their appendages. Only about 70% of affected individuals have a mutation in one of 100 renal ciliopathy genes, and no unifying pathogenic mechanism has been identified. Recently, some NPHPs, including NIMA-related kinase 8 (NEK8) and centrosomal protein 164 (CEP164), have been found to act in the DNA-damage response pathway and to contribute to genome stability. Here, we show that NME/NM23 nucleoside-diphosphate kinase 3 (NME3) that has recently been found to facilitate DNA-repair mechanisms binds to several NPHPs, including NEK8, CEP164, and ankyrin repeat and sterile α motif domain-containing 6 (ANKS6). Depletion of nme3 in zebrafish and Xenopus resulted in typical ciliopathy-associated phenotypes, such as renal malformations and left-right asymmetry defects. We further found that endogenous NME3 localizes to the basal body and that it associates also with centrosomal proteins, such as NEK6, which regulates cell cycle arrest after DNA damage. The ciliopathy-typical manifestations of NME3 depletion in two vertebrate in vivo models, the biochemical association of NME3 with validated NPHPs, and its localization to the basal body reveal a role for NME3 in ciliary function. We conclude that mutations in the NME3 gene may aggravate the ciliopathy phenotypes observed in humans.
Assuntos
Ciliopatias/genética , Doenças Renais Císticas/congênito , Nucleosídeo NM23 Difosfato Quinases/genética , Insuficiência Renal/genética , Animais , Pontos de Checagem do Ciclo Celular/genética , Cílios/genética , Cílios/patologia , Ciliopatias/fisiopatologia , Dano ao DNA/genética , Reparo do DNA/genética , Modelos Animais de Doenças , Humanos , Rim/patologia , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Proteínas dos Microtúbulos/genética , Quinases Relacionadas a NIMA/genética , Proteínas Nucleares/genética , Insuficiência Renal/patologia , Xenopus/genética , Peixe-Zebra/genéticaRESUMO
BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) are the most prevalent cause of kidney disease in the first three decades of life. Previous gene panel studies showed monogenic causation in up to 12% of patients with CAKUT. METHODS: We applied whole-exome sequencing to analyze the genotypes of individuals from 232 families with CAKUT, evaluating for mutations in single genes known to cause human CAKUT and genes known to cause CAKUT in mice. In consanguineous or multiplex families, we additionally performed a search for novel monogenic causes of CAKUT. RESULTS: In 29 families (13%), we detected a causative mutation in a known gene for isolated or syndromic CAKUT that sufficiently explained the patient's CAKUT phenotype. In three families (1%), we detected a mutation in a gene reported to cause a phenocopy of CAKUT. In 15 of 155 families with isolated CAKUT, we detected deleterious mutations in syndromic CAKUT genes. Our additional search for novel monogenic causes of CAKUT in consanguineous and multiplex families revealed a potential single, novel monogenic CAKUT gene in 19 of 232 families (8%). CONCLUSIONS: We identified monogenic mutations in a known human CAKUT gene or CAKUT phenocopy gene as the cause of disease in 14% of the CAKUT families in this study. Whole-exome sequencing provides an etiologic diagnosis in a high fraction of patients with CAKUT and will provide a new basis for the mechanistic understanding of CAKUT.
Assuntos
Sequenciamento do Exoma/métodos , Predisposição Genética para Doença/epidemiologia , Linhagem , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Animais , Humanos , Incidência , Rim/anormalidades , Camundongos , Fenótipo , Prognóstico , Medição de Risco , Sensibilidade e Especificidade , Distribuição por Sexo , Sistema Urinário/anormalidades , Anormalidades Urogenitais/epidemiologia , Refluxo Vesicoureteral/epidemiologiaRESUMO
BACKGROUND: Steroid-resistant nephrotic syndrome (SRNS) is a frequent cause of CKD. The discovery of monogenic causes of SRNS has revealed specific pathogenetic pathways, but these monogenic causes do not explain all cases of SRNS. METHODS: To identify novel monogenic causes of SRNS, we screened 665 patients by whole-exome sequencing. We then evaluated the in vitro functional significance of two genes and the mutations therein that we discovered through this sequencing and conducted complementary studies in podocyte-like Drosophila nephrocytes. RESULTS: We identified conserved, homozygous missense mutations of GAPVD1 in two families with early-onset NS and a homozygous missense mutation of ANKFY1 in two siblings with SRNS. GAPVD1 and ANKFY1 interact with the endosomal regulator RAB5. Coimmunoprecipitation assays indicated interaction between GAPVD1 and ANKFY1 proteins, which also colocalized when expressed in HEK293T cells. Silencing either protein diminished the podocyte migration rate. Compared with wild-type GAPVD1 and ANKFY1, the mutated proteins produced upon ectopic expression of GAPVD1 or ANKFY1 bearing the patient-derived mutations exhibited altered binding affinity for active RAB5 and reduced ability to rescue the knockout-induced defect in podocyte migration. Coimmunoprecipitation assays further demonstrated a physical interaction between nephrin and GAPVD1, and immunofluorescence revealed partial colocalization of these proteins in rat glomeruli. The patient-derived GAPVD1 mutations reduced nephrin-GAPVD1 binding affinity. In Drosophila, silencing Gapvd1 impaired endocytosis and caused mistrafficking of the nephrin ortholog. CONCLUSIONS: Mutations in GAPVD1 and probably in ANKFY1 are novel monogenic causes of NS. The discovery of these genes implicates RAB5 regulation in the pathogenesis of human NS.