Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nat Cancer ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741011

RESUMO

Cancer immunotherapy with chimeric antigen receptor (CAR) T cells can cause immune effector cell-associated neurotoxicity syndrome (ICANS). However, the molecular mechanisms leading to ICANS are not well understood. Here we examined the role of microglia using mouse models and cohorts of individuals with ICANS. CD19-directed CAR (CAR19) T cell transfer in B cell lymphoma-bearing mice caused microglia activation and neurocognitive deficits. The TGFß-activated kinase-1 (TAK1)-NF-κB-p38 MAPK pathway was activated in microglia after CAR19 T cell transfer. Pharmacological TAK1 inhibition or genetic Tak1 deletion in microglia using Cx3cr1CreER:Tak1fl/fl mice resulted in reduced microglia activation and improved neurocognitive activity. TAK1 inhibition allowed for potent CAR19-induced antilymphoma effects. Individuals with ICANS exhibited microglia activation in vivo when studied by translocator protein positron emission tomography, and imaging mass cytometry revealed a shift from resting to activated microglia. In summary, we prove a role for microglia in ICANS pathophysiology, identify the TAK1-NF-κB-p38 MAPK axis as a pathogenic signaling pathway and provide a rationale to test TAK1 inhibition in a clinical trial for ICANS prevention after CAR19 T cell-based cancer immunotherapy.

2.
Sci Transl Med ; 16(735): eadi1501, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381845

RESUMO

Acute graft-versus-host disease (aGVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT), for which therapeutic options are limited. Strategies to promote intestinal tissue tolerance during aGVHD may improve patient outcomes. Using single-cell RNA sequencing, we identified a lipocalin-2 (LCN2)-expressing neutrophil population in mice with intestinal aGVHD. Transfer of LCN2-overexpressing neutrophils or treatment with recombinant LCN2 reduced aGVHD severity, whereas the lack of epithelial or hematopoietic LCN2 enhanced aGVHD severity and caused microbiome alterations. Mechanistically, LCN2 induced insulin-like growth factor 1 receptor (IGF-1R) signaling in macrophages through the LCN2 receptor SLC22A17, which increased interleukin-10 (IL-10) production and reduced major histocompatibility complex class II (MHCII) expression. Transfer of LCN2-pretreated macrophages reduced aGVHD severity but did not reduce graft-versus-leukemia effects. Furthermore, LCN2 expression correlated with IL-10 expression in intestinal biopsies in multiple cohorts of patients with aGVHD, and LCN2 induced IGF-1R signaling in human macrophages. Collectively, we identified a LCN2-expressing intestinal neutrophil population that reduced aGVHD severity by decreasing MHCII expression and increasing IL-10 production in macrophages. This work provides the foundation for administration of LCN2 as a therapeutic approach for aGVHD.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Animais , Camundongos , Neutrófilos/patologia , Interleucina-10 , Lipocalina-2/genética , Doença Enxerto-Hospedeiro/genética , Macrófagos/patologia , Doença Aguda
3.
Matrix Biol ; 125: 113-132, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38135164

RESUMO

Transglutaminase 2 (TG2) plays a vital role in stabilizing extracellular matrix (ECM) proteins through enzymatic crosslinking during tissue growth, repair, and inflammation. TG2 also binds non-covalently to fibronectin (FN), an essential component of the ECM, facilitating cell adhesion, migration, proliferation, and survival. However, the interaction between TG2 and fibrillar FN remains poorly understood, as most studies have focused on soluble or surface-adsorbed FN or FN fragments, which differ in their conformations from insoluble FN fibers. Using a well-established in vitro FN fiber stretch assay, we discovered that the binding of a crosslinking enzyme to ECM fibers is mechano-regulated. TG2 binding to FN is tuned by the mechanical tension of FN fibers, whereby TG2 predominantly co-localizes to low-tension FN fibers, while fiber stretching reduces their affinity for TG2. This mechano-regulated binding relies on the proximity between the N-terminal ß-sandwich and C-terminal ß-barrels of TG2. Crosslinking mass spectrometry (XL-MS) revealed a novel TG2-FN synergy site within TG2's C-terminal ß-barrels that interacts with FN regions located outside of the canonical gelatin binding domain, specifically FNI2 and FNIII14-15. Combining XL-MS distance restraints with molecular docking revealed the mechano-regulated binding mechanism between TG2 and modules FNI7-9 by which mechanical forces regulate TG2-FN interactions. This highlights a previously unrecognized role of TG2 as a tension sensor for FN fibers. This novel interaction mechanism has significant implications in physiology and mechanobiology, including how forces regulate cell adhesion, spreading, migration, phenotype modulation, depending on the tensional state of ECM fibers. Data are available via ProteomeXchange with identifier PXD043976.


Assuntos
Fibronectinas , Proteína 2 Glutamina gama-Glutamiltransferase , Fibronectinas/metabolismo , Transglutaminases/genética , Transglutaminases/química , Transglutaminases/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas da Matriz Extracelular/metabolismo
4.
Mol Cancer Res ; 21(8): 849-864, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37071397

RESUMO

The treatment of patients with metastatic melanoma with immune checkpoint inhibitors (ICI) leads to impressive response rates but primary and secondary resistance to ICI reduces progression-free survival. Novel strategies that interfere with resistance mechanisms are key to further improve patient outcome during ICI therapy. P53 is often inactivated by mouse-double-minute-2 (MDM2), which may decrease immunogenicity of melanoma cells. We analyzed primary patient-derived melanoma cell lines, performed bulk sequencing analysis of patient-derived melanoma samples, and used melanoma mouse models to investigate the role of MDM2-inhibition for enhanced ICI therapy. We found increased expression of IL15 and MHC-II in murine melanoma cells upon p53 induction by MDM2-inhibition. MDM2-inhibitor induced MHC-II and IL15-production, which was p53 dependent as Tp53 knockdown blocked the effect. Lack of IL15-receptor in hematopoietic cells or IL15 neutralization reduced the MDM2-inhibition/p53-induction-mediated antitumor immunity. P53 induction by MDM2-inhibition caused anti-melanoma immune memory as T cells isolated from MDM2-inhibitor-treated melanoma-bearing mice exhibited anti-melanoma activity in secondary melanoma-bearing mice. In patient-derived melanoma cells p53 induction by MDM2-inhibition increased IL15 and MHC-II. IL15 and CIITA expressions were associated with a more favorable prognosis in patients bearing WT but not TP53-mutated melanoma. IMPLICATIONS: MDM2-inhibition represents a novel strategy to enhance IL15 and MHC-II-production, which disrupts the immunosuppressive tumor microenvironment. On the basis of our findings, a clinical trial combining MDM2-inhibition with anti-PD-1 immunotherapy for metastatic melanoma is planned.


Assuntos
Antineoplásicos , Melanoma , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Interleucina-15/metabolismo , Interleucina-15/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/genética , Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Microambiente Tumoral
5.
Neuron ; 111(9): 1504-1516.e9, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36898375

RESUMO

Human understanding of the world can change rapidly when new information comes to light, such as when a plot twist occurs in a work of fiction. This flexible "knowledge assembly" requires few-shot reorganization of neural codes for relations among objects and events. However, existing computational theories are largely silent about how this could occur. Here, participants learned a transitive ordering among novel objects within two distinct contexts before exposure to new knowledge that revealed how they were linked. Blood-oxygen-level-dependent (BOLD) signals in dorsal frontoparietal cortical areas revealed that objects were rapidly and dramatically rearranged on the neural manifold after minimal exposure to linking information. We then adapt online stochastic gradient descent to permit similar rapid knowledge assembly in a neural network model.


Assuntos
Aprendizagem , Redes Neurais de Computação , Humanos , Lobo Frontal
6.
J Stat Mech ; 2023(11): 114004, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38524253

RESUMO

Learning in deep neural networks is known to depend critically on the knowledge embedded in the initial network weights. However, few theoretical results have precisely linked prior knowledge to learning dynamics. Here we derive exact solutions to the dynamics of learning with rich prior knowledge in deep linear networks by generalising Fukumizu's matrix Riccati solution (Fukumizu 1998 Gen 1 1E-03). We obtain explicit expressions for the evolving network function, hidden representational similarity, and neural tangent kernel over training for a broad class of initialisations and tasks. The expressions reveal a class of task-independent initialisations that radically alter learning dynamics from slow non-linear dynamics to fast exponential trajectories while converging to a global optimum with identical representational similarity, dissociating learning trajectories from the structure of initial internal representations. We characterise how network weights dynamically align with task structure, rigorously justifying why previous solutions successfully described learning from small initial weights without incorporating their fine-scale structure. Finally, we discuss the implications of these findings for continual learning, reversal learning and learning of structured knowledge. Taken together, our results provide a mathematical toolkit for understanding the impact of prior knowledge on deep learning.

7.
Sci Transl Med ; 14(676): eabp9675, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542690

RESUMO

Acute graft-versus-host disease (aGVHD), which is driven by allogeneic T cells, has a high mortality rate and limited treatment options. Human ß-defensin 2 (hBD-2) is an endogenous epithelial cell-derived host-defense peptide. In addition to its antimicrobial effects, hBD-2 has immunomodulatory functions thought to be mediated by CCR2 and CCR6 in myeloid cells. In this study, we analyzed the effect of recombinant hBD-2 on aGVHD development. We found that intestinal ß-defensin expression was inadequately induced in response to inflammation in two independent cohorts of patients with aGVHD and in a murine aGVHD model. Treatment of mice with hBD-2 reduced GVHD severity and mortality and modulated the intestinal microbiota composition, resulting in reduced neutrophil infiltration in the ileum. Furthermore, hBD-2 treatment decreased proliferation and proinflammatory cytokine production by allogeneic T cells in vivo while preserving the beneficial graft-versus-leukemia effect. Using transcriptome and kinome profiling, we found that hBD-2 directly dampened primary murine and human allogeneic T cell proliferation, activation, and metabolism in a CCR2- and CCR6-independent manner by reducing proximal T cell receptor signaling. Furthermore, hBD-2 treatment diminished alloreactive T cell infiltration and the expression of genes involved in T cell receptor signaling in the ilea of mice with aGVHD. Together, we found that both human and murine aGVHD were characterized by a lack of intestinal ß-defensin induction and that recombinant hBD-2 represents a potential therapeutic strategy to counterbalance endogenous hBD-2 deficiency.


Assuntos
Doença Enxerto-Hospedeiro , beta-Defensinas , Humanos , Animais , Camundongos , beta-Defensinas/genética , beta-Defensinas/metabolismo , beta-Defensinas/farmacologia , Infiltração de Neutrófilos , Íleo , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/genética , Receptores de Antígenos de Linfócitos T
8.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36145311

RESUMO

Indoleamine 2, 3-dioxygenase 1 (IDO1) is commonly expressed by cancers as a mechanism for evading the immune system. Preclinical and clinical studies have indicated the potential of combining IDO1 inhibitors with immune therapies for the treatment of cancer, strengthening an interest in the discovery of novel dioxygenase inhibitors for reversing tumour-mediated immune suppression. To facilitate the discovery, development and investigation of novel small molecule inhibitors of IDO1 and its hepatic isozyme tryptophan dioxygenase (TDO2), murine tumour cells were engineered to selectively express either murine or human IDO1 and TDO2 for use as tools to dissect both the species specificity and isoenzyme selectivity of newly discovered inhibitors. Lewis lung carcinoma (LLTC) lines were engineered to express either murine or human IDO1 for use to test species selectivity of the novel inhibitors; in addition, GL261 glioma lines were engineered to express either human IDO1 or human TDO2 and used to test the isoenzyme selectivity of individual inhibitors in cell-based assays. The 20 most potent inhibitors against recombinant human IDO1 enzyme, discovered from a commissioned screening of 40,000 compounds in the Australian WEHI compound library, returned comparable IC50 values against murine or human IDO1 in cell-based assays using the LLTC-mIDO1 and LLTC-hIDO1 line, respectively. To test the in vivo activity of the hits, transfected lines were inoculated into syngeneic C57Bl/6 mice. Individual LLTC-hIDO1 tumours showed variable expression of human IDO1 in contrast to GL261-hIDO1 tumours which were homogenous in their IDO1 expression and were subsequently used for in vivo studies. W-0019482, the most potent IDO1 inhibitor identified from cell-based assays, reduced plasma and intratumoural ratios of kynurenine to tryptophan (K:T) and delayed the growth of subcutaneous GL261-hIDO1 tumours in mice. Synthetic modification of W-0019482 generated analogues with dual IDO1/TDO2 inhibitory activity, as well as inhibitors that were selective for either TDO2 or IDO1. These results demonstrate the versatility of W-0019482 as a lead in generating all three subclasses of tryptophan dioxygenase inhibitors which can be applied for investigating the individual roles and interactions between IDO1 and TDO2 in driving cancer-mediated immune suppression.

9.
Blood ; 140(10): 1167-1181, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35853161

RESUMO

Patients with acute myeloid leukemia (AML) often achieve remission after allogeneic hematopoietic cell transplantation (allo-HCT) but subsequently die of relapse driven by leukemia cells resistant to elimination by allogeneic T cells based on decreased major histocompatibility complex II (MHC-II) expression and apoptosis resistance. Here we demonstrate that mouse-double-minute-2 (MDM2) inhibition can counteract immune evasion of AML. MDM2 inhibition induced MHC class I and II expression in murine and human AML cells. Using xenografts of human AML and syngeneic mouse models of leukemia, we show that MDM2 inhibition enhanced cytotoxicity against leukemia cells and improved survival. MDM2 inhibition also led to increases in tumor necrosis factor-related apoptosis-inducing ligand receptor-1 and -2 (TRAIL-R1/2) on leukemia cells and higher frequencies of CD8+CD27lowPD-1lowTIM-3low T cells, with features of cytotoxicity (perforin+CD107a+TRAIL+) and longevity (bcl-2+IL-7R+). CD8+ T cells isolated from leukemia-bearing MDM2 inhibitor-treated allo-HCT recipients exhibited higher glycolytic activity and enrichment for nucleotides and their precursors compared with vehicle control subjects. T cells isolated from MDM2 inhibitor-treated AML-bearing mice eradicated leukemia in secondary AML-bearing recipients. Mechanistically, the MDM2 inhibitor-mediated effects were p53-dependent because p53 knockdown abolished TRAIL-R1/2 and MHC-II upregulation, whereas p53 binding to TRAILR1/2 promotors increased upon MDM2 inhibition. The observations in the mouse models were complemented by data from human individuals. Patient-derived AML cells exhibited increased TRAIL-R1/2 and MHC-II expression on MDM2 inhibition. In summary, we identified a targetable vulnerability of AML cells to allogeneic T-cell-mediated cytotoxicity through the restoration of p53-dependent TRAIL-R1/2 and MHC-II production via MDM2 inhibition.


Assuntos
Leucemia Mieloide Aguda , Proteína Supressora de Tumor p53 , Animais , Apoptose , Humanos , Leucemia Mieloide Aguda/genética , Complexo Principal de Histocompatibilidade , Camundongos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transplante Homólogo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
10.
Cancer Lett ; 537: 215680, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35461758

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. Following the publication of the above article, the Editor was notified that an error occurred in which all images were published with incorrect versions. The Editor has taken the decision that the manuscript is no longer acceptable in its current form, nor with a corrigendum, as the extensive changes to the figures and publication would lead to ambiguity for our readers. We have therefore made the decision to retract this manuscript from Cancer Letters with the possibility of resubmission and republication of the manuscript in its corrected form after peer review.

11.
Cancer Lett ; 538: 215697, 2022 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-35487310

RESUMO

Metastatic small cell lung cancer (SCLC) is not curable. While SCLC is initially sensitive to chemotherapy, remissions are short-lived. The relapse is induced by chemotherapy-selected tumor stem cells, which express the AC133 epitope of the CD133 stem cell marker. We studied the effectiveness of AC133-specific CAR T cells post-chemotherapy using human primary SCLC and an orthotopic xenograft mouse model. AC133-specific CAR T cells migrated to SCLC tumor lesions, reduced the tumor burden, and prolonged survival in a humanized orthotopic SCLC model, but were not able to entirely eliminate tumors. We identified CD73 and PD-L1 as immune-escape mechanisms and combined PD-1-inhibition and CD73-inhibition with CAR T cell treatment. This triple-immunotherapy induced cures in 25% of the mice, without signs of graft-versus-host disease or bone marrow failure. AC133+ cancer stem cells and PD-L1+CD73+ myeloid cells were detectable in primary human SCLC tissues, suggesting that patients may benefit from the triple-immunotherapy. We conclude that the combination of AC133-specific CAR T cells, anti-PD-1-antibody and CD73-inhibitor specifically eliminates chemo-resistant tumor stem cells, overcomes SCLC-mediated T cell inhibition, and might induce long-term complete remission in an otherwise incurable disease.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , Antígeno B7-H1 , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva , Neoplasias Pulmonares/patologia , Camundongos , Recidiva Local de Neoplasia , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/terapia
12.
Mycoses ; 65(4): 458-465, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35138651

RESUMO

BACKGROUND: COVID-19-associated invasive pulmonary aspergillosis (CAPA) is associated with increased mortality. Cases of CAPA caused by azole-resistant Aspergillus fumigatus strains have been reported. OBJECTIVES: To analyse the twelve-month CAPA prevalence in a German tertiary care hospital and to characterise clinical A. fumigatus isolates from two German hospitals by antifungal susceptibility testing and microsatellite genotyping. PATIENTS/METHODS: Retrospective observational study in critically ill adults from intensive care units with COVID-19 from 17 February 2020 until 16 February 2021 and collection of A. fumigatus isolates from two German centres. EUCAST broth microdilution for four azole compounds and microsatellite PCR with nine markers were performed for each collected isolate (N = 27) and additional for three non-COVID A. fumigatus isolates. RESULTS: welve-month CAPA prevalence was 7.2% (30/414), and the rate of azole-resistant A. fumigatus isolates from patients with CAPA was 3.7% with detection of one TR34/L98H mutation. The microsatellite analysis revealed no major clustering of the isolates. Sequential isolates mainly showed the same genotype over time. CONCLUSIONS: Our findings demonstrate similar CAPA prevalence to other reports and a low azole-resistance rate. Genotyping of A. fumigatus showed polyclonal distribution except for sequential isolates.


Assuntos
COVID-19 , Aspergilose Pulmonar , Adulto , Antifúngicos/farmacologia , Aspergillus fumigatus , Azóis/farmacologia , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Humanos , Unidades de Terapia Intensiva , Testes de Sensibilidade Microbiana , Aspergilose Pulmonar/complicações , Aspergilose Pulmonar/epidemiologia
13.
Paediatr Respir Rev ; 43: 67-77, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35131174

RESUMO

Mobile (m) Health technology is well-suited for Remote Patient Monitoring (RPM) in a patient's habitual environment. In recent years there have been fast-paced developments in mHealth-enabled pediatric RPM, especially during the COVID-19 pandemic, necessitating evidence synthesis. To this end, we conducted a scoping review of clinical trials that had utilized mHealth-enabled RPM of pediatric asthma. MEDLINE, Embase and Web of Science were searched from September 1, 2016 through August 31, 2021. Our scoping review identified 25 publications that utilized synchronous and asynchronous mHealth-enabled RPM in pediatric asthma, either involving mobile applications or via individual devices. The last three years has seen the development of evidence-based, multidisciplinary, and participatory mHealth interventions. The quality of the studies has been improving, such that 40% of included study reports were randomized controlled trials. In conclusion, there exists high-quality evidence on mHealth-enabled RPM in pediatric asthma, warranting future systematic reviews and/or meta-analyses of the benefits of such RPM.


Assuntos
Asma , COVID-19 , Aplicativos Móveis , Telemedicina , Criança , Humanos , Pandemias , Asma/terapia
14.
Front Immunol ; 12: 760199, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868001

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a potentially curative therapy for patients suffering from hematological malignancies via the donor immune system driven graft-versus-leukemia effect. However, the therapy is mainly limited by severe acute and chronic graft-versus-host disease (GvHD), both being life-threatening complications after allo-HCT. GvHD develops when donor T cells do not only recognize remaining tumor cells as foreign, but also the recipient's tissue, leading to a severe inflammatory disease. Typical GvHD target organs include the skin, liver and intestinal tract. Currently all approved strategies for GvHD treatment are immunosuppressive therapies, with the first-line therapy being glucocorticoids. However, therapeutic options for glucocorticoid-refractory patients are still limited. Novel therapeutic approaches, which reduce GvHD severity while preserving GvL activity, are urgently needed. Targeting kinase activity with small molecule inhibitors has shown promising results in preclinical animal models and clinical trials. Well-studied kinase targets in GvHD include Rho-associated coiled-coil-containing kinase 2 (ROCK2), spleen tyrosine kinase (SYK), Bruton's tyrosine kinase (BTK) and interleukin-2-inducible T-cell kinase (ITK) to control B- and T-cell activation in acute and chronic GvHD. Janus Kinase 1 (JAK1) and 2 (JAK2) are among the most intensively studied kinases in GvHD due to their importance in cytokine production and inflammatory cell activation and migration. Here, we discuss the role of kinase inhibition as novel treatment strategies for acute and chronic GvHD after allo-HCT.


Assuntos
Doença Enxerto-Hospedeiro/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Doença Aguda , Animais , Doença Crônica , Doença Enxerto-Hospedeiro/imunologia , Humanos , Proteínas Quinases/imunologia
15.
Cancer Lett ; 520: 385-399, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34407431

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. Following the publication of the above article, the Editor was notified that an error occurred in which all images were published with incorrect versions. The Editor has taken the decision that the manuscript is no longer acceptable in its current form, nor with a corrigendum, as the extensive changes to the figures and publication would lead to ambiguity for our readers. We have therefore made the decision to retract this manuscript from Cancer Letters with the possibility of resubmission and republication of the manuscript in its corrected form after peer review.


Assuntos
5'-Nucleotidase/genética , Antígeno AC133/genética , Antígeno B7-H1/genética , Carcinoma de Pequenas Células do Pulmão/terapia , 5'-Nucleotidase/antagonistas & inibidores , Antígeno AC133/imunologia , Animais , Anticorpos Anti-Idiotípicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Imunoterapia Adotiva/tendências , Masculino , Camundongos , Metástase Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/imunologia , Carcinoma de Pequenas Células do Pulmão/patologia , Linfócitos T/imunologia , Carga Tumoral
16.
Biophys J ; 120(20): 4608-4622, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34411575

RESUMO

Vinculin plays a key role during the first phase of focal adhesion formation and interacts with the plasma membrane through specific binding of its tail domain to the lipid phosphatidylinositol 4,5-bisphosphate (PIP2). Our understanding of the PIP2-vinculin interaction has been hampered by contradictory biochemical and structural data. Here, we used a multiscale molecular dynamics simulation approach, in which unbiased coarse-grained molecular dynamics were used to generate starting structures for subsequent microsecond-long all-atom simulations. This allowed us to map the interaction of the vinculin tail with PIP2-enriched membranes in atomistic detail. In agreement with experimental data, we have shown that membrane binding is sterically incompatible with the intramolecular interaction between vinculin's head and tail domain. Our simulations further confirmed biochemical and structural results, which identified two positively charged surfaces, the basic collar and the basic ladder, as the main PIP2 interaction sites. By introducing a valency-disaggregated binding network analysis, we were able to map the protein-lipid interactions in unprecedented detail. In contrast to the basic collar, in which PIP2 is specifically recognized by an up to hexavalent binding pocket, the basic ladder forms a series of low-valency binding sites. Importantly, many of these PIP2 binding residues are also involved in maintaining vinculin in a closed, autoinhibited conformation. These findings led us to propose a molecular mechanism for the coupling between vinculin activation and membrane binding. Finally, our refined binding site suggests an allosteric relationship between PIP2 and F-actin binding that disfavors simultaneous interaction with both ligands, despite nonoverlapping binding sites.


Assuntos
Actinas , Simulação de Dinâmica Molecular , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Sítios de Ligação , Ligação Proteica , Vinculina/metabolismo
17.
Hemasphere ; 5(6): e581, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34095764

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a potentially curative therapy for patients suffering from hematological malignancies, and its therapeutic success is based on the graft-versus-leukemia (GvL) effect. Severe acute and chronic graft-versus-host disease (GvHD) are life-threatening complications after allo-HCT. To date, most of the approved treatment strategies for GvHD rely on broadly immunosuppressive regimens, which limit the beneficial GvL effect by reducing the cytotoxicity of anti-leukemia donor T-cells. Therefore, novel therapeutic strategies that rely on immunomodulatory rather than only immunosuppressive effects could help to improve patient outcomes. Treatments should suppress severe GvHD while preserving anti-leukemia immunity. New treatment strategies include the blockade of T-cell activation via inhibition of dipeptidyl peptidase 4 and cluster of differentiation 28-mediated co-stimulation, reduction of proinflammatory interleukin (IL)-2, IL-6 and tumor necrosis factor-α signaling, as well as kinase inhibition. Janus kinase (JAK)1/2 inhibition acts directly on T-cells, but also renders antigen presenting cells more tolerogenic and blocks dendritic cell-mediated T-cell activation and proliferation. Extracorporeal photopheresis, hypomethylating agent application, and low-dose IL-2 are powerful approaches to render the immune response more tolerogenic by regulatory T-cell induction. The transfer of immunomodulatory and immunosuppressive cell populations, including mesenchymal stromal cells and regulatory T-cells, showed promising results in GvHD treatment. Novel experimental procedures are based on metabolic reprogramming of donor T-cells by reducing glycolysis, which is crucial for cytotoxic T-cell proliferation and activity.

18.
Mol Cancer Res ; 19(9): 1596-1608, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34088868

RESUMO

The bone marrow microenvironment (BMME) is key player in regulation and maintenance of hematopoiesis. Oncogenic RAS mutations, causing constitutive activation of multiple tumor-promoting pathways, are frequently found in human cancer. So far in hematologic malignancies, RAS mutations have only been reported to occur in hematopoietic cells. In this study, we investigated the effect of oncogenic Kras expression in the BMME in a chimeric mouse model. We observed that an activating mutation of Kras in the nonhematopoietic system leads to a phenotype resembling myelodysplastic syndrome (MDS) characterized by peripheral cytopenia, marked dysplasia within the myeloid lineage as well as impaired proliferation and differentiation capacity of hematopoietic stem and progenitor cells. The phenotypic changes could be reverted when the BM was re-isolated and transferred into healthy recipients, indicating that the KrasG12D -activation in the nonhematopoietic BMME was essential for the MDS phenotype. Gene expression analysis of sorted nonhematopoietic BM niche cells from KrasG12D mice revealed upregulation of multiple inflammation-related genes including IL1-superfamily members (Il1α, Il1ß, Il1f9) and the NLPR3 inflammasome. Thus, pro-inflammatory IL1-signaling in the BMME may contribute to MDS development. Our findings show that a single genetic change in the nonhematopoietic BMME can cause an MDS phenotype. Oncogenic Kras activation leads to pro-inflammatory signaling in the BMME which impairs HSPCs function. IMPLICATIONS: These findings may help to identify new therapeutic targets for MDS.


Assuntos
Células da Medula Óssea/patologia , Transformação Celular Neoplásica/patologia , Células-Tronco Hematopoéticas/patologia , Mutação , Síndromes Mielodisplásicas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Microambiente Tumoral , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Síndromes Mielodisplásicas/etiologia , Síndromes Mielodisplásicas/metabolismo , Fenótipo , Transdução de Sinais
19.
Sci Rep ; 11(1): 7499, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33820913

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a disease with a very unfavorable prognosis. Surgical resection represents the only potentially curative treatment option, but recurrence after complete resection is almost certain. In an exploratory attempt we here aimed at identifying preoperative plasma protein biomarkers with the potential to predict early recurrence after resection of PDAC. Peripheral blood samples from 14 PDAC patients divided into three groups according to their time to tumor recurrence after curatively intended resection (early: < 6 months, medium: 6-12 months, late: > 12 months) underwent targeted proteome analysis. Proteins most strongly discriminating early and late recurrence were then examined in a number of established PDAC cell lines and their culture supernatants. Finally, PDAC organoid lines from primary tumors of patients with early and late recurrence were analyzed for confirmation and validation of results. In total, 23 proteins showed differential abundance in perioperative plasma from PDAC patients with early recurrence when compared to patients with late recurrence. Following confirmation of expression on a transcriptional and translational level in PDAC cell lines we further focused on three upregulated (MAEA, NT5E, AZU1) and two downregulated proteins (ATP6AP2, MICA). Increased expression of NT5E was confirmed in a subset of PDAC organoid cultures from tumors with early recurrence. MICA expression was heterogeneous and ATP6AP2 levels were very similar in both organoids from early and late recurrent tumors. Most strikingly, we observed high MAEA expression in all tested PDAC (n = 7) compared to a non-cancer ductal organoid line. MAEA also demonstrated potential to discriminate early recurrence from late recurrence PDAC organoids. Our study suggests that identification of plasma protein biomarkers released by tumor cells may be feasible and of value to predict the clinical course of patients. Prediction of recurrence dynamics would help to stratify up-front resectable PDAC patients for neoadjuvant chemotherapy approaches in an individualized fashion. Here, MAEA and NT5E were the most promising candidates for further evaluation.


Assuntos
Adenocarcinoma/sangue , Adenocarcinoma/cirurgia , Biomarcadores Tumorais/sangue , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/cirurgia , Recidiva Local de Neoplasia/sangue , Adenocarcinoma/genética , Adulto , Idoso , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA