RESUMO
The GPR124/RECK/WNT7 pathway is an essential regulator of CNS angiogenesis and blood-brain barrier (BBB) function. GPR124, a brain endothelial adhesion seven-pass transmembrane protein, associates with RECK, which binds and stabilizes newly synthesized WNT7 that is transferred to frizzled (FZD) to initiate canonical ß-catenin signaling. GPR124 remains enigmatic: although its extracellular domain (ECD) is essential, the poorly conserved intracellular domain (ICD) appears to be variably required in mammals versus zebrafish, potentially via adaptor protein bridging of GPR124 and FZD ICDs. GPR124 ICD deletion impairs zebrafish angiogenesis, but paradoxically retains WNT7 signaling upon mammalian transfection. We thus investigated GPR124 ICD function using the mouse deletion mutant Gpr124ΔC. Despite inefficiently expressed GPR124ΔC protein, Gpr124ΔC/ΔC mice could be born with normal cerebral cortex angiogenesis, in comparison with Gpr124-/- embryonic lethality, forebrain avascularity and hemorrhage. Gpr124ΔC/ΔC vascular phenotypes were restricted to sporadic ganglionic eminence angiogenic defects, attributable to impaired GPR124ΔC protein expression. Furthermore, Gpr124ΔC and the recombinant GPR124 ECD rescued WNT7 signaling in culture upon brain endothelial Gpr124 knockdown. Thus, in mice, GPR124-regulated CNS forebrain angiogenesis and BBB function are exerted by ICD-independent functionality, extending the signaling mechanisms used by adhesion seven-pass transmembrane receptors.
Assuntos
Barreira Hematoencefálica , Encéfalo , Neovascularização Fisiológica , Receptores Acoplados a Proteínas G , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/embriologia , Neovascularização Fisiológica/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Camundongos , Encéfalo/metabolismo , Encéfalo/embriologia , Domínios Proteicos , Camundongos Knockout , Transdução de Sinais , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Humanos , Células Endoteliais/metabolismo , Angiogênese , Proteínas Ligadas por GPIRESUMO
Complex barriers comprise the blood-aqueous (BAB) and the blood-retinal barrier (BRB), and separate anterior and posterior eye chambers, vitreous body, and sensory retina from the circulation. They prevent pathogens and toxins from entering the eye, control movement of fluid, proteins, and metabolites, and contribute to the maintenance of the ocular immune status. Morphological correlates of blood-ocular barriers are tight junctions between neighboring endothelial and epithelial cells, which function as gatekeepers of the paracellular transport of molecules, thereby limiting their uncontrolled access to ocular chambers and tissues. The BAB is composed of tight junctions between endothelial cells of the iris vasculature, endothelial cells of Schlemm's canal inner wall, and cells of the nonpigmented ciliary epithelium. The BRB consists of tight junctions between endothelial cells of the retinal vessels (inner BRB) and epithelial cells of the retinal pigment epithelium (outer BRB). These junctional complexes respond rapidly to pathophysiological changes, thus enabling vascular leakage of blood-derived molecules and inflammatory cells into ocular tissues and chambers. Blood-ocular barrier function, which can be clinically measured by laser flare photometry or fluorophotometry, is compromised in traumatic, inflammatory, or infectious processes, but also frequently contributes to the pathophysiology of chronic diseases of the anterior eye segment and the retina, as exemplified by diabetic retinopathy and age-related macular degeneration.
Assuntos
Retinopatia Diabética , Células Endoteliais , Humanos , Retina , Barreira Hematorretiniana/fisiologia , Epitélio Pigmentado da RetinaRESUMO
Inflammation and immune system activation are key pathologic events in the onset and escalation of diabetic retinopathy (DR). Both are driven by cytokines and complement originating from the retinal pigment epithelium (RPE). Despite the RPE's pivotal role, there is no therapeutic tool to specifically interfere with the RPE-related pathomechanism. A therapy that addresses RPE cells and counteracts inflammation and immune response would be of paramount value for the early treatment of DR, where currently are no specific therapies available. Here, we utilized lipoprotein-mimetic lipid nanocapsules to deliver the anti-inflammatory and immunosuppressive drug cyclosporin A (CsA) to RPE cells. Using a mouse model of DR that mirrors all pathologic aspects of human DR, we demonstrate that intravenously applied CsA-loaded lipid nanocapsules comprehensively counteract inflammation and immune system activation. One single injection suppressed the expression of pro-inflammatory cytokines, dampened macrophage infiltration, and prevented macrophage and microglia activation in eyes with DR. This work shows that CsA-loaded lipid nanocapsules can offer new avenues for the treatment of DR.
Assuntos
Diabetes Mellitus , Retinopatia Diabética , Nanocápsulas , Animais , Humanos , Retinopatia Diabética/tratamento farmacológico , Ciclosporina/uso terapêutico , Nanocápsulas/uso terapêutico , Injeções Intravenosas , Inflamação/tratamento farmacológico , Modelos Animais de Doenças , Citocinas , Sistema Imunitário/metabolismo , Sistema Imunitário/patologia , Lipídeos , Diabetes Mellitus/tratamento farmacológicoRESUMO
Retinopathy of prematurity (ROP) is a retinal disease that threatens the vision of prematurely born infants. Severe visual impairment up to complete blindness is caused by neovascularization and inflammation, progressively destroying the immature retina. ROP primarily affects newborns in middle- and low-income countries with limited access to current standard treatments such as intraocular drug injections and laser- or cryotherapy. To overcome these limitations, we developed a nanotherapeutic that effectively prevents ROP development with one simple intravenous injection. Its lipid nanocapsules transport the antiangiogenic and anti-inflammatory cyclosporin A efficiently into disease-driving retinal pigment epithelium cells. In a mouse model of ROP, a single intravenous injection of the nanotherapeutic prevented ROP and led to normal retinal development by counteracting neovascularization and inflammation. This nanotherapeutic approach has the potential to bring about a change of paradigm in ROP therapy and prevent millions of preterm born infants from developing ROP.
Assuntos
Nanocápsulas , Retinopatia da Prematuridade , Animais , Ciclosporina/farmacologia , Ciclosporina/uso terapêutico , Humanos , Recém-Nascido , Inflamação/tratamento farmacológico , Injeções Intravenosas , Lipídeos , Camundongos , Nanocápsulas/uso terapêutico , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/prevenção & controle , Fator A de Crescimento do Endotélio VascularRESUMO
Diabetes mellitus is a common disease affecting more than 537 million adults worldwide. The microvascular complications that occur during the course of the disease are widespread and affect a variety of organ systems in the body. Diabetic retinopathy is one of the most common long-term complications, which include, amongst others, endothelial dysfunction, and thus, alterations in the blood-retinal barrier (BRB). This particularly restrictive physiological barrier is important for maintaining the neuroretina as a privileged site in the body by controlling the inflow and outflow of fluid, nutrients, metabolic end products, ions, and proteins. In addition, people with diabetic retinopathy (DR) have been shown to be at increased risk for systemic vascular complications, including subclinical and clinical stroke, coronary heart disease, heart failure, and nephropathy. DR is, therefore, considered an independent predictor of heart failure. In the present review, the effects of diabetes on the retina, heart, and kidneys are described. In addition, a putative common microRNA signature in diabetic retinopathy, nephropathy, and heart failure is discussed, which may be used in the future as a biomarker to better monitor disease progression. Finally, the use of miRNA, targeted neurotrophin delivery, and nanoparticles as novel therapeutic strategies is highlighted.
Assuntos
Diabetes Mellitus , Retinopatia Diabética , Insuficiência Cardíaca , Nefropatias , MicroRNAs , Adulto , Barreira Hematorretiniana/metabolismo , Diabetes Mellitus/metabolismo , Retinopatia Diabética/metabolismo , Insuficiência Cardíaca/metabolismo , Humanos , Nefropatias/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Crescimento NeuralRESUMO
Protocadherins (PCDHs) belong to the cadherin superfamily and represent the largest subgroup of calcium-dependent adhesion molecules. In the genome, most PCDHs are arranged in three clusters, α, ß, and γ on chromosome 5q31. PCDHs are highly expressed in the central nervous system (CNS). Several PCDHs have tumor suppressor functions, but their individual role in primary brain tumors has not yet been elucidated. Here, we examined the mRNA expression of PCDHGC3, a member of the PCDHγ cluster, in non-cancerous brain tissue and in gliomas of different World Health Organization (WHO) grades and correlated it with the clinical data of the patients. We generated a PCDHGC3 knockout U343 cell line and examined its growth rate and migration in a wound healing assay. We showed that PCDHGC3 mRNA and protein were significantly overexpressed in glioma tissue compared to a non-cancerous brain specimen. This could be confirmed in glioma cell lines. High PCDHGC3 mRNA expression correlated with longer progression-free survival (PFS) in glioma patients. PCDHGC3 knockout in U343 resulted in a slower growth rate but a significantly faster migration rate in the wound healing assay and decreased the expression of several genes involved in WNT signaling. PCDHGC3 expression should therefore be further investigated as a PFS-marker in gliomas. However, more studies are needed to elucidate the molecular mechanisms underlying the PCDHGC3 effects.
Assuntos
Neoplasias Encefálicas , Proteínas Relacionadas a Caderinas , Glioblastoma , Glioma , Neoplasias Encefálicas/genética , Proteínas Relacionadas a Caderinas/genética , Caderinas/genética , Caderinas/metabolismo , Glioblastoma/genética , Glioma/genética , Humanos , Intervalo Livre de Progressão , Protocaderinas , RNA MensageiroRESUMO
Macular neovascularization type 3, formerly known as retinal angiomatous proliferation (RAP), is a hallmark of age-related macular degeneration and is associated with an accumulation of myeloid cells, such as microglia (MG) and infiltrating blood-derived macrophages (MAC). However, the contribution of MG and MAC to the myeloid cell pool at RAP sites and their exact functions remain unknown. In this study, we combined a microglia-specific reporter mouse line with a mouse model for RAP to identify the contribution of MG and MAC to myeloid cell accumulation at RAP and determined the transcriptional profile of MG using RNA sequencing. We found that MG are the most abundant myeloid cell population around RAP, whereas MAC are rarely, if ever, associated with late stages of RAP. RNA sequencing of RAP-associated MG showed that differentially expressed genes mainly contribute to immune-associated processes, including chemotaxis and migration in early RAP and proliferative capacity in late RAP, which was confirmed by immunohistochemistry. Interestingly, MG upregulated only a few angiomodulatory factors, suggesting a rather low angiogenic potential. In summary, we showed that MG are the dominant myeloid cell population at RAP sites. Moreover, MG significantly altered their transcriptional profile during RAP formation, activating immune-associated processes and exhibiting enhanced proliferation, however, without showing substantial upregulation of angiomodulatory factors.
Assuntos
Degeneração Macular , Neovascularização Retiniana , Animais , Proliferação de Células/genética , Angiofluoresceinografia , Degeneração Macular/complicações , Camundongos , Microglia , Neovascularização Patológica/complicações , Neovascularização Retiniana/genética , Tomografia de Coerência ÓpticaRESUMO
Pathological angiogenesis promotes tumor growth, metastasis, and atherosclerotic plaque rupture. Macrophages are key players in these processes. However, whether these macrophages differentiate from bone marrow-derived monocytes or from local vascular wall-resident stem and progenitor cells (VW-SCs) is an unresolved issue of angiogenesis. To answer this question, we analyzed vascular sprouting and alterations in aortic cell populations in mouse aortic ring assays (ARA). ARA culture leads to the generation of large numbers of macrophages, especially within the aortic adventitia. Using immunohistochemical fate-mapping and genetic in vivo-labeling approaches we show that 60% of these macrophages differentiate from bone marrow-independent Ly6c+/Sca-1+ adventitial progenitor cells. Analysis of the NCX-/- mouse model that genetically lacks embryonic circulation and yolk sac perfusion indicates that at least some of those progenitor cells arise yolk sac-independent. Macrophages represent the main source of VEGF in ARA that vice versa promotes the generation of additional macrophages thereby creating a pro-angiogenetic feedforward loop. Additionally, macrophage-derived VEGF activates CD34+ progenitor cells within the adventitial vasculogenic zone to differentiate into CD31+ endothelial cells. Consequently, depletion of macrophages and VEGFR2 antagonism drastically reduce vascular sprouting activity in ARA. In summary, we show that angiogenic activation induces differentiation of macrophages from bone marrow-derived as well as from bone marrow-independent VW-SCs. The latter ones are at least partially yolk sac-independent, too. Those VW-SC-derived macrophages critically contribute to angiogenesis, making them an attractive target to interfere with pathological angiogenesis in cancer and atherosclerosis as well as with regenerative angiogenesis in ischemic cardiovascular disorders.
Assuntos
Túnica Adventícia , Células Endoteliais , Túnica Adventícia/patologia , Animais , Medula Óssea/patologia , Células Endoteliais/patologia , Macrófagos/patologia , Camundongos , Neovascularização Patológica/patologia , Células-Tronco/patologia , Fator A de Crescimento do Endotélio VascularRESUMO
Transforming growth factor ß (TGFß) signaling has manifold functions such as regulation of cell growth, differentiation, migration, and apoptosis. Moreover, there is increasing evidence that it also acts in a neuroprotective manner. We recently showed that TGFß receptor type 2 (Tgfbr2) is upregulated in retinal neurons and Müller cells during retinal degeneration. In this study we investigated if this upregulation of TGFß signaling would have functional consequences in protecting retinal neurons. To this end, we analyzed the impact of TGFß signaling on photoreceptor viability using mice with cell type-specific deletion of Tgfbr2 in retinal neurons and Müller cells (Tgfbr2ΔOC) in combination with a genetic model of photoreceptor degeneration (VPP). We examined retinal morphology and the degree of photoreceptor degeneration, as well as alterations of the retinal transcriptome. In summary, retinal morphology was not altered due to TGFß signaling deficiency. In contrast, VPP-induced photoreceptor degeneration was drastically exacerbated in double mutant mice (Tgfbr2ΔOC; VPP) by induction of pro-apoptotic genes and dysregulation of the MAP kinase pathway. Therefore, TGFß signaling in retinal neurons and Müller cells exhibits a neuroprotective effect and might pose promising therapeutic options to attenuate photoreceptor degeneration in humans.
Assuntos
Degeneração Retiniana , Fator de Crescimento Transformador beta , Animais , Modelos Animais de Doenças , Células Ependimogliais/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Retina/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Fator de Crescimento Transformador beta/metabolismoRESUMO
Ischemic insults to the heart and brain, i.e., myocardial and cerebral infarction, respectively, are amongst the leading causes of death worldwide. While there are therapeutic options to allow reperfusion of ischemic myocardial and brain tissue by reopening obstructed vessels, mitigating primary tissue damage, post-infarction inflammation and tissue remodeling can lead to secondary tissue damage. Similarly, ischemia in retinal tissue is the driving force in the progression of neovascular eye diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD), which eventually lead to functional blindness, if left untreated. Intriguingly, the easily observable retinal blood vessels can be used as a window to the heart and brain to allow judgement of microvascular damages in diseases such as diabetes or hypertension. The complex neuronal and endocrine interactions between heart, retina and brain have also been appreciated in myocardial infarction, ischemic stroke, and retinal diseases. To describe the intimate relationship between the individual tissues, we use the terms heart-brain and brain-retina axis in this review and focus on the role of transforming growth factor ß (TGFß) and neurotrophins in regulation of these axes under physiologic and pathologic conditions. Moreover, we particularly discuss their roles in inflammation and repair following ischemic/neovascular insults. As there is evidence that TGFß signaling has the potential to regulate expression of neurotrophins, it is tempting to speculate, and is discussed here, that cross-talk between TGFß and neurotrophin signaling protects cells from harmful and/or damaging events in the heart, retina, and brain.
Assuntos
Encéfalo/metabolismo , Miocárdio/metabolismo , Fatores de Crescimento Neural/metabolismo , Retina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Humanos , Ligação ProteicaRESUMO
Hereditary retinal degenerations like retinitis pigmentosa (RP) are among the leading causes of blindness in younger patients. To enable in vivo investigation of cellular and molecular mechanisms responsible for photoreceptor cell death and to allow testing of therapeutic strategies that could prevent retinal degeneration, animal models have been created. In this study, we deeply characterized the transcriptional profile of mice carrying the transgene rhodopsin V20G/P23H/P27L (VPP), which is a model for autosomal dominant RP. We examined the degree of photoreceptor degeneration and studied the impact of the VPP transgene-induced retinal degeneration on the transcriptome level of the retina using next generation RNA sequencing (RNASeq) analyses followed by weighted correlation network analysis (WGCNA). We furthermore identified cellular subpopulations responsible for some of the observed dysregulations using in situ hybridizations, immunofluorescence staining, and 3D reconstruction. Using RNASeq analysis, we identified 9256 dysregulated genes and six significantly associated gene modules in the subsequently performed WGCNA. Gene ontology enrichment showed, among others, dysregulation of genes involved in TGF-ß regulated extracellular matrix organization, the (ocular) immune system/response, and cellular homeostasis. Moreover, heatmaps confirmed clustering of significantly dysregulated genes coding for components of the TGF-ß, G-protein activated, and VEGF signaling pathway. 3D reconstructions of immunostained/in situ hybridized sections revealed retinal neurons and Müller cells as the major cellular population expressing representative components of these signaling pathways. The predominant effect of VPP-induced photoreceptor degeneration pointed towards induction of neuroinflammation and the upregulation of neuroprotective pathways like TGF-ß, G-protein activated, and VEGF signaling. Thus, modulation of these processes and signaling pathways might represent new therapeutic options to delay the degeneration of photoreceptors in diseases like RP.
Assuntos
Perfilação da Expressão Gênica , Neuroproteção/genética , Retinose Pigmentar/genética , Transcrição Gênica , Regulação para Cima/genética , Animais , Quimiocina CCL2/metabolismo , Feminino , Proteínas de Ligação ao GTP/metabolismo , Redes Reguladoras de Genes , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neuroglia/metabolismo , Degeneração Retiniana/complicações , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Rodopsina/genética , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
OBJECTIVE: In proliferative retinopathies, complications derived from neovascularization cause blindness. During early disease, pericyte's apoptosis contributes to endothelial dysfunction and leakage. Hypoxia then drives VEGF (vascular endothelial growth factor) secretion and pathological neoangiogenesis. Cardiac ANP (atrial natriuretic peptide) contributes to systemic microcirculatory homeostasis. ANP is also formed in the retina, with unclear functions. Here, we characterized whether endogenously formed ANP regulates retinal (neo)angiogenesis. Approach and Results: Retinal vascular development and ischemia-driven neovascularization were studied in mice with global deletion of GC-A (guanylyl cyclase-A), the cGMP (cyclic guanosine monophosphate)-forming ANP receptor. Mice with a floxed GC-A gene were interbred with Tie2-Cre, GFAP-Cre, or PDGF-Rß-CreERT2 lines to dissect the endothelial, astrocyte versus pericyte-mediated actions of ANP in vivo. In neonates with global GC-A deletion (KO), vascular development was mildly delayed. Moreover, such KO mice showed augmented vascular regression and exacerbated ischemia-driven neovascularization in the model of oxygen-induced retinopathy. Notably, absence of GC-A in endothelial cells did not impact retinal vascular development or pathological neovascularization. In vitro ANP/GC-A/cGMP signaling, via activation of cGMP-dependent protein kinase I, inhibited hypoxia-driven astrocyte's VEGF secretion and TGF-ß (transforming growth factor beta)-induced pericyte apoptosis. In neonates lacking ANP/GC-A signaling in astrocytes, vascular development and hyperoxia-driven vascular regression were unaltered; ischemia-induced neovascularization was modestly increased. Remarkably, inactivation of GC-A in pericytes retarded physiological retinal vascularization and markedly enhanced cell apoptosis, vascular regression, and subsequent neovascularization in oxygen-induced retinopathy. CONCLUSIONS: Protective pericyte effects of the ANP/GC-A/cGMP pathway counterregulate the initiation and progression of experimental proliferative retinopathy. Our observations indicate augmentation of endogenous pericyte ANP signaling as target for treatment of retinopathies associated with neovascularization.
Assuntos
Astrócitos/metabolismo , GMP Cíclico/genética , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos Natriuréticos/metabolismo , Pericitos/metabolismo , RNA/genética , Neovascularização Retiniana/genética , Animais , Animais Recém-Nascidos , Apoptose , Astrócitos/patologia , Células Cultivadas , GMP Cíclico/biossíntese , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Immunoblotting , Camundongos , Camundongos Transgênicos , Pericitos/patologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Transdução de SinaisRESUMO
The degeneration of photoreceptors is a common hallmark of ocular diseases like retinitis pigmentosa (RP) or age-related macular degeneration (AMD). To experimentally induce photoreceptor degeneration, the light damage paradigm is frequently used. In this study we show that the exposure to high amounts of cool white light (10,000 lux, 1 h) resulted in a more than 11-fold higher apoptotic rate in the retina compared to light exposure with 5000 lux for 30 min. Consequently, exposure to intense light resulted in a significant downregulation of retinal mRNA expression levels of the reference genes Gapdh, Gnb2l, Rpl32, Rps9, Actb, Ubc or Tbp compared to untreated controls. Investigators performing light-induced photoreceptor degeneration should be aware of the fact that higher light intensities will result in a dysregulation of reference genes.
Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Luz , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Retina/efeitos da radiação , Apoptose , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Células Fotorreceptoras de Vertebrados/patologia , Retina/citologia , Degeneração Retiniana/patologia , Retinose Pigmentar/patologiaRESUMO
The vasoactive peptide endothelin is an effective regulator of blood pressure and vascular homeostasis. In addition, the dysregulation of the endothelin signaling pathway is discussed to contribute to ocular diseases like glaucoma or diabetic retinopathy. Furthermore, our workgroup and others showed a protective effect of endothelin 2 for the survival of photoreceptors. In this study, we analyzed mRNA expression levels of the endothelin signaling family in wild-type mice after a puncture of the eye, intravitreal PBS injections, or light-induced photoreceptor degeneration. We observed elevated endothelin receptor a (Eta), endothelin receptor b (Etb), endothelin 1(Et1), and endothelin 2 (Et2) levels, while endothelin 3 (Et3) mRNA levels were not significantly altered. Our findings indicate an important role of the endothelin signaling pathway in response to ocular trauma or disease. These findings make endothelin signaling a promising target to attenuate retinal degeneration.
Assuntos
Endotelinas/metabolismo , Oftalmopatias/patologia , Receptores de Endotelina/metabolismo , Retina/metabolismo , Transdução de Sinais , Animais , Camundongos , Retina/patologiaRESUMO
Quantifying the number of axons in the optic nerve is of interest in many research questions. Here, we show that a stereological method allows simple, efficient, precise and unbiased determination of the total axon number in the murine optic nerve. Axons in semi-thin optic nerve cross sections from untreated eyes (nâ¯=â¯21) and eyes subjected to retinal damage by intravitreous NMDA injections (nâ¯=â¯32) or PBS controls (nâ¯=â¯5) were manually identified, counted and digitally labeled by hand. A stereological procedure was empirically tested with systematic combinations of different sampling methods (simple random sampling without replacement, systematic uniform random sampling, stratified random sampling) and sampling parameters. Extensive numerical Monte Carlo experiments were performed to evaluate their large-sample properties. Our results demonstrate reliable determination of total axon number and superior performance compared to other methods at a small fraction of the time required for a full manual count. We specify suitable sampling parameters for the adoption of an efficient stereological sampling scheme, give empirical estimates of the additionally introduced sampling variance to facilitate experimental planning, and offer AxonCounter, an easy-to-use plugin implementing these stereological methods for the multi-platform image processing application NIH ImageJ.
Assuntos
Contagem de Células/métodos , Técnicas Citológicas , Nervo Óptico/citologia , Animais , Agonistas de Aminoácidos Excitatórios/farmacologia , Processamento de Imagem Assistida por Computador/métodos , Camundongos , Camundongos Endogâmicos BALB C , N-Metilaspartato/farmacologia , Nervo Óptico/efeitos dos fármacosRESUMO
Sequence variants in LOXL1 coding for the secreted enzyme lysyl oxidase homolog 1 (LOXL1) associate with pseudoexfoliation (PEX) syndrome, a condition that is characterized by the deposition of extracellular ï¬brillar PEX material in the anterior eye and other parts of the body. Since the specific role of LOXL1 in the pathogenesis of PEX is unclear, and an increase in its expression was reported for early stages of PEX syndrome, we generated and studied transgenic mice with ocular overexpression of its mouse ortholog Loxl1. The chicken ßB1-crystallin promoter was used to overexpress Loxl1 in the lenses of ßB1-crystallin-Loxl1 transgenic mice. Transgenic lenses contained high levels of the protein LOXL1 and its mRNA, which were both not detectable in lenses of wildtype littermates. In wildtype mice, immunoreactivity for LOXL1 was mainly seen extracellularly in region of the ciliary zonules. ßB1-crystallin-Loxl1 littermates showed an additional diffuse immunostaining in lens fibers and capsule, and in the inner limiting membrane and retina indicating secretion of soluble LOXL1 from transgenic lenses. In addition, lens fibers of transgenic animals contained multiple distinct spots of very intense LOXL1 immunoreactivity. By transmission electron microscopy, those spots correlated with electron-dense round or oval bodies of 20-50â¯nm in diameter which were localized in the rough endoplasmic reticulum and not seen in wildtype lenses. Immunogold electron microscopy confirmed that the electron-dense bodies contained LOXL1 indicating aggregation of insoluble LOXL1. Similar structures were seen in the extracellular lens capsule suggesting their secretion from lens fibers. Otherwise, no changes were seen between the eyes of ßB1-crystallin-Loxl1 mice and their wildtype littermates, neither by light microscopy and funduscopy of whole eyes, nor by scanning and quantitative transmission electron microscopy of ciliary epithelium and zonules. At one month of age, intraocular pressure was significantly higher in transgenic mice than in wildtype littermates. No differences in IOP were seen though at 2-5 months of age. We conclude that LOXL1 has a strong tendency to aggregate in the rER when expressed in vivo at high amounts. A similar scenario, involving intracellular aggregation of LOXL1 and secretion of LOXL1 aggregates into the extracellular space, may be involved in the early pathogenetic events in eyes of PEX patients.
Assuntos
Aminoácido Oxirredutases/genética , Corpo Ciliar/metabolismo , Síndrome de Exfoliação/metabolismo , Regulação da Expressão Gênica/fisiologia , Cristalino/metabolismo , Agregados Proteicos/fisiologia , Aminoácido Oxirredutases/metabolismo , Animais , Western Blotting , Corpo Ciliar/ultraestrutura , Síndrome de Exfoliação/etiologia , Feminino , Imuno-Histoquímica , Pressão Intraocular , Cápsula do Cristalino/metabolismo , Cristalino/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , Cadeia B de beta-Cristalina/genéticaRESUMO
The molecular pathogenesis of choroidal neovascularization (CNV), an angiogenic process that critically contributes to vision loss in age-related macular degeneration, is unclear. Herein, we analyzed the role of transforming growth factor (TGF)-ß signaling for CNV formation by generating a series of mutant mouse models with induced conditional deletion of TGF-ß signaling in the entire eye, the retinal pigment epithelium (RPE), or the vascular endothelium. Deletion of TGF-ß signaling in the eye caused CNV, irrespectively if it was ablated in newborn or 3-week-old mice. Areas of CNV showed photoreceptor degeneration, multilayered RPE, basal lamina deposits, and accumulations of monocytes/macrophages. The changes progressed, leading to marked structural and functional alterations of the retina. Although the specific deletion of TGF-ß signaling in the RPE caused no obvious changes, specific deletion in vascular endothelial cells caused CNV and a phenotype similar to that observed after the deletion in the entire eye. We conclude that impairment of TGF-ß signaling in the vascular endothelium of the eye is sufficient to trigger CNV formation. Our findings highlight the importance of TGF-ß signaling as a key player in the development of ocular neovascularization and indicate a fundamental role of TGF-ß signaling in the pathogenesis of age-related macular degeneration.
Assuntos
Neovascularização de Coroide/metabolismo , Degeneração Macular/patologia , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Corioide/patologia , Neovascularização de Coroide/genética , Modelos Animais de Doenças , Camundongos Knockout , Retina/metabolismo , Fator de Crescimento Transformador beta/genéticaRESUMO
Background: Photoreceptor cell death due to extensive light exposure and induced oxidative-stress are associated with retinal degeneration. A correlated dysregulation of the complement system amplifies the damaging effects, but the local and time-dependent progression of this mechanism is not thoroughly understood. Methods: Light-induced photoreceptor damage (LD) was induced in Balb/c mice with white light illumination either for 24 h with 1000 lux (constant model) or 0.5 h with 5000 lux (acute model). Complement protein and mRNA expression levels were compared at 1 and 3 days post-LD for C1s, complement factor B (CFB), mannose binding lectin A, mannose-binding protein-associated serine protease 1 (MASP-1), C3, C4, C9, and complement factor P in retina and RPE/choroid. Histological analyses visualized apoptosis, microglia/macrophage migration, gliosis and deposition of the complement activation marker C3d. Systemic anaphylatoxin serum concentrations were determined using an ELISA. Results: Apoptosis, gliosis and microglia/macrophage migration into the outer nuclear layer showed similar patterns in both models. Local complement factor expression revealed an early upregulation of complement factor mRNA in the acute and constant light regimen at 1 day post-treatment for c1s, cfb, masp-1, c3, c4 and c9 in the RPE/choroid. However, intraretinal complement mRNA expression for c1s, cfb, c3 and c4 was increased at 1 day in the constant and at 3 days in the acute model. A corresponding regulation on protein level in the retina following both LD models was observed for C3, which was upregulated at 1 day and correlated with increased C3d staining in the ganglion cell layer and at the RPE. In the RPE/choroid C1s-complex protein detection was increased at 3 days after LD irrespectively of the light intensities used. Conclusion: LD in mouse eyes is correlated with local complement activity. The time-dependent local progression of complement regulation on mRNA and protein levels were equivalent in the acute and constant LD model, except for the intraretinal, time-dependent mRNA expression. Knowing the relative time courses of local complement expression and cellular activity can help to elucidate novel therapeutic options in retinal degeneration indicating at which time point of disease complement has to be rebalanced.
RESUMO
The transforming growth factor-ß (TGF-ß) pathway contributes to maintain the quiescence of adult neural stem and progenitor cells in the brain. In the retina, Müller cells are discussed to represent a glial cell population with progenitor-like characteristics. Here, we aimed to investigate if elevated TGF-ß signaling modulates the proliferation of Müller cells during retinal development. We generated mutant mice with a systemic, heterozygous up-regulation of TGF-ß signaling by deleting its inhibitor SMAD7. We investigated apoptosis, proliferation, and differentiation of Müller cells in the developing retina. We show that a heterozygous deletion of SMAD7 results in an increased proliferation of Müller cell progenitors in the central retina at postnatal day 4, the time window when Müller cells differentiate in the mouse retina. This in turn results in a thickened retina and inner nuclear layer and a higher number of differentiated Müller cells in the more developed retina. Müller cells in mutant mice contain higher amounts of nestin than those of control animals which indicates that the increase in TGF-ß signaling activity during retinal development contribute to maintain some progenitor-like characteristics in Müller cells even after their differentiation period. We conclude that TGF-ß signaling influences Müller cell proliferation and differentiation during retinal development.
Assuntos
Proliferação de Células , Retina/crescimento & desenvolvimento , Retina/metabolismo , Proteína Smad7/deficiência , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Camundongos , Camundongos Knockout , Retina/citologia , Fator de Crescimento Transformador beta/metabolismoRESUMO
Olfactomedin 1 (OLFM1) is a secreted glycoprotein and member of the olfactomedin protein family, which is preferentially expressed in various areas throughout the central nervous system. To learn about the functional properties of OLFM1 in the eye, we investigated its localization in the mouse and pig eye. In addition, we analyzed the ocular phenotype of Olfm1 mutant mice in which 52 amino acids were deleted in the central part (M2 region) of OLFM1. OLFM1 was detected in cornea, sclera, retina, and optic nerve of both wild-type and Olfm1 mutant littermates. By immunohistochemistry and double labeling with the lectin peanut agglutinin, OLFM1 was found in the interphotoreceptor matrix (IPM) of mouse and pig retina where it was directly localized to the inner segments of photoreceptors. Western blotting confirmed the presence of the OLFM1 isoforms pancortin 1 (BMY) and pancortin 2 (BMZ) in the IPM. The retinal phenotype of Olfm1 mutant mice did not obviously differ from that of wild-type littermates. In addition, outer nuclear layer (ONL) and total retinal thickness were not different, and the same was true for the area of the optic nerve in cross sections. Functional changes were observed though by electroretinography, which showed significantly lower a- and b-wave amplitudes in Olfm1 mutant mice when compared to age-matched wild-type mice. When light damage experiments were performed as an experimental paradigm of photoreceptor apoptosis, significantly more TUNEL-positive cells were observed in Olfm1 mutant mice 30 h after light exposure. One week after light exposure, the ONL was significantly thinner in Olfm1 mutant mice than in wild-type littermates indicating increased photoreceptor loss. No differences were observed when rhodopsin turnover or ERK1/2 signaling was investigated. We conclude that OLFM1 is a newly identified IPM molecule that serves an important role for photoreceptor homeostasis, which is significantly compromised in the eyes of Olfm1 mutant mice.