Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Data Brief ; 54: 110510, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38799712

RESUMO

Chemical pollution of the aquatic environment is nowadays characterised by increasing levels of anthropogenic organic compounds at low concentrations and is recognised as one of the main drivers of the deteriorated ecological state of European waterbodies. To improve the understanding of the impact of chemical pollution in surface waters, a combined approach of chemical and bioanalytical testing is considered necessary for effective ecologically oriented water management. For this dataset, six 25-L water samples were collected at six sampling sites along the Holtemme River in Central Germany using large-volume solid phase extraction. All samples were analysed by targeted high-resolution liquid chromatography-mass spectrometry (LC-MS) and a selected bioanalytical test battery using effect-based methods. These methods included cytotoxicity assessment, several mechanism-specific CALUXⓇ tests to identify endocrine and oxidative stress-related effects and the fish embryo acute toxicity test to investigate (sub)lethal effects in the model species Danio rerio. This approach provided a dataset that offers a longitudinal characterisation of the chemical pollution and ecotoxicological impacts. The combination of chemical analysis and effect-based analysis is valuable for future studies as it will help researchers, risk assessors and authorities to identify hot spots of chemical pollution, monitor environmental quality standards and recommend mitigation strategies.

2.
Sci Total Environ ; 923: 171499, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453075

RESUMO

The assessment of restoration success often neglects trophic interactions within food webs, focusing instead on biodiversity and community structure. Here, we analysed the long-term recovery of food web structure based on stable isotopes (δ13C and δ15N) of benthic invertebrates and quantified responses of food web metrics to time since restoration. The samples derived from twelve restored sites with different restoration ages, sampled annually from 2012 to 2021, and covering an investigation period of up to 28 years after restoration for the whole catchment. Temporal developments of the restored sites were compared to the development of two near-natural sites. The restoration measures consisted of the cessation of sewage inflow and morphological restoration of the channels. As a clear and consistent result over almost all sites, trophic similarity (proportion of co-existing species occupying similar trophic niches) increased with time since restoration, and reached values of near-natural sites, suggesting an increase in the stability and resilience of the food webs. Surprisingly, resource diversity decreased at most restored sites within 10 years after restoration, probably due to the removal of wastewater-derived resources, and a shift towards leaf litter as the dominant resource following the regrowth of the riparian vegetation. Food chain length showed no consistent pattern over time at the different sites both increasing and decreasing with time since restoration. Overall, restoration had clear effects on the food web structure of stream ecosystems. While some effects such as the increase in trophic similarity were consistent at almost all sites, others such as response of the food chain length were context dependent. The study demonstrates the potential of utilizing food web metrics, particularly trophic similarity, in restoration research to achieve a more holistic understanding of ecosystem recovery.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Rios , Invertebrados/fisiologia , Biodiversidade
3.
Sci Total Environ ; 872: 162196, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36781140

RESUMO

Our capacity to predict trajectories of ecosystem degradation and recovery is limited, especially when impairments are caused by multiple stressors. Recovery may be fast or slow and either complete or partial, sometimes result in novel ecosystem states or even fail completely. Here, we introduce the Asymmetric Response Concept (ARC) that provides a basis for exploring and predicting the pace and magnitude of ecological responses to, and release from, multiple stressors. The ARC holds that three key mechanisms govern population, community and ecosystem trajectories. Stress tolerance is the main mechanism determining responses to increasing stressor intensity, whereas dispersal and biotic interactions predominantly govern responses to the release from stressors. The shifting importance of these mechanisms creates asymmetries between the ecological trajectories that follow increasing and decreasing stressor intensities. This recognition helps to understand multiple stressor impacts and to predict which measures will restore communities that are resistant to restoration.


Assuntos
Ecossistema , Rios
4.
Environ Sci Eur ; 34(1): 66, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35946043

RESUMO

Background: Bioaccumulation of hydrophobic organic compounds (HOCs) along freshwater food chains is a major environmental concern as top predators in food webs are relevant for human consumption. To characterize and manage the associated risks, considerable numbers of organisms are sampled regularly for monitoring purposes. However, ethical and financial issues call for an alternative, more generic and more robust approach for assessing the internal exposure of fish that circumvents large variability in biota sampling due to interindividual differences. Passive sampling devices (PSDs) offer a fugacity-based approach for pollutant enrichment from different abiotic environmental compartments with a subsequent estimation of bioaccumulation in fish which we explored and compared to HOC concentrations in fish as determined using traditional approaches. Results: In this study, concentrations in silicone-based PSDs applied to the water phase and suspended particulate matter (SPM) of a river polluted with HOCs were used to estimate the concentration in model lipids at thermodynamic equilibrium with either environmental compartment. For comparison, muscle tissue of seven fish species (trophic level 1.8 to 2.8) was extracted using traditional exhaustive solvent extraction, and the lipid-normalized concentrations of HOCs were determined. The PSD-based data from SPM proved to be a more conservative estimator for HOCs accumulated in fish than those from water. Body length of the fish was found to be more suitable to describe increasing accumulation of HOCs than their trophic level as derived from stable isotope analysis and might offer a suitable alternative for future studies. Conclusions: By combining fugacity-based sampling in the abiotic environment, translation into corresponding concentrations in model lipids and body length as an indicator for increasing bioaccumulation in fish, we present a suggestion for a robust approach that may be a meaningful addition to conventional monitoring methods. This approach potentially increases the efficiency of existing monitoring programs without the need to regularly sacrifice vertebrate species. Supplementary Information: The online version contains supplementary material available at 10.1186/s12302-022-00644-w.

5.
Glob Chang Biol ; 28(16): 4783-4793, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35579172

RESUMO

Human impacts, particularly nutrient pollution and land-use change, have caused significant declines in the quality and quantity of freshwater resources. Most global assessments have concentrated on species diversity and composition, but effects on the multifunctionality of streams and rivers remain unclear. Here, we analyse the most comprehensive compilation of stream ecosystem functions to date to provide an overview of the responses of nutrient uptake, leaf litter decomposition, ecosystem productivity, and food web complexity to six globally pervasive human stressors. We show that human stressors inhibited ecosystem functioning for most stressor-function pairs. Nitrate uptake efficiency was most affected and was inhibited by 347% due to agriculture. However, concomitant negative and positive effects were common even within a given stressor-function pair. Some part of this variability in effect direction could be explained by the structural heterogeneity of the landscape and latitudinal position of the streams. Ranking human stressors by their absolute effects on ecosystem multifunctionality revealed significant effects for all studied stressors, with wastewater effluents (194%), agriculture (148%), and urban land use (137%) having the strongest effects. Our results demonstrate that we are at risk of losing the functional backbone of streams and rivers if human stressors persist in contemporary intensity, and that freshwaters are losing critical ecosystem services that humans rely on. We advocate for more studies on the effects of multiple stressors on ecosystem multifunctionality to improve the functional understanding of human impacts. Finally, freshwater management must shift its focus toward an ecological function-based approach and needs to develop strategies for maintaining or restoring ecosystem functioning of streams and rivers.


Assuntos
Ecossistema , Rios , Agricultura , Efeitos Antropogênicos , Cadeia Alimentar , Humanos
6.
Sci Total Environ ; 804: 150020, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34508932

RESUMO

The assessment of the exposure of aquatic wildlife to complex environmental mixtures of chemicals originating from both point and diffuse sources and evaluating the potential impact thereof constitutes a significant step towards mitigating toxic pressure and the improvement of ecological status. In the current proof-of-concept study, we demonstrate the potential of a novel Aggregated Biomarker Response (ABR) approach involving a comprehensive set of biomarkers to identify complex exposure and impacts on wild brown trout (Salmo trutta fario). Our scenario used a small lowland river in Germany (Holtemme river in the Elbe river catchment) impacted by two wastewater treatment plants (WWTP) and diffuse agricultural runoff as a case study. The trout were collected along a pollution gradient (characterised in a parallel study) in the river. Compared to fish from the reference site upstream of the first WWTP, the trout collected downstream of the WWTPs showed a significant increase in micronucleus formation, phase I and II enzyme activities, and oxidative stress parameters in agreement with increasing exposure to various chemicals. By integrating single biomarker responses into an aggregated biomarker response, the two WWTPs' contribution to the observed toxicity could be clearly differentiated. The ABR results were supported by chemical analyses and whole transcriptome data, which revealed alterations of steroid biosynthesis and associated pathways, including an anti-androgenic effect, as some of the key drivers of the observed toxicity. Overall, this combined approach of in situ biomarker responses complemented with molecular pathway analysis allowed for a comprehensive ecotoxicological assessment of fish along the river. This study provides evidence for specific hazard potentials caused by mixtures of agricultural and WWTP derived chemicals at sublethal concentrations. Using aggregated biomarker responses combined with chemical analyses enabled an evidence-based ranking of sites with different degrees of pollution according to toxic stress and observed effects.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Animais , Biomarcadores , Rios , Truta , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
7.
Glob Chang Biol ; 28(3): 859-876, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34862833

RESUMO

Water diversion and pollution are two pervasive stressors in river ecosystems that often co-occur. Individual effects of both stressors on basal resources available to stream communities have been described, with diversion reducing detritus standing stocks and pollution increasing biomass of primary producers. However, interactive effects of both stressors on the structure and trophic basis of food webs remain unknown. We hypothesized that the interaction between both stressors increases the contribution of the green pathway in stream food webs. Given the key role of the high-quality, but less abundant, primary producers, we also hypothesized an increase in food web complexity with larger trophic diversity in the presence of water diversion and pollution. To test these hypotheses, we selected four rivers in a range of pollution subject to similar water diversion schemes, and we compared food webs upstream and downstream of the diversion. We characterized food webs by means of stable isotope analysis. Both stressors directly changed the availability of basal resources, with water diversion affecting the brown food web by decreasing detritus stocks, and pollution enhancing the green food web by promoting biofilm production. The propagation of the effects at the base of the food web to higher trophic levels differed between stressors. Water diversion had little effect on the structure of food webs, but pollution increased food chain length and trophic diversity, and reduced trophic redundancy. The effects at higher trophic levels were exacerbated when combining both stressors, as the relative contribution of biofilm to the stock of basal resources increased even further. Overall, we conclude that moderate pollution increases food web complexity and that the interaction with water abstraction seems to amplify this effect. Our study shows the importance of assessing the interaction between stressors to create predictive tools for a proper management of ecosystems.


Assuntos
Ecossistema , Cadeia Alimentar , Biomassa , Rios , Água
8.
Sci Total Environ ; 769: 144324, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33482551

RESUMO

Meeting ecological and water quality standards in lotic ecosystems is often failed due to multiple stressors. However, disentangling stressor effects and identifying relevant stressor-effect-relationships in complex environmental settings remain major challenges. By combining state-of-the-art methods from ecotoxicology and aquatic ecosystem analysis, we aimed here to disentangle the effects of multiple chemical and non-chemical stressors along a longitudinal land use gradient in a third-order river in Germany. We distinguished and evaluated four dominant stressor categories along this gradient: (1) Hydromorphological alterations: Flow diversity and substrate diversity correlated with the EU-Water Framework Directive based indicators for the quality element macroinvertebrates, which deteriorated at the transition from near-natural reference sites to urban sites. (2) Elevated nutrient levels and eutrophication: Low to moderate nutrient concentrations together with complete canopy cover at the reference sites correlated with low densities of benthic algae (biofilms). We found no more systematic relation of algal density with nutrient concentrations at the downstream sites, suggesting that limiting concentrations are exceeded already at moderate nutrient concentrations and reduced shading by riparian vegetation. (3) Elevated organic matter levels: Wastewater treatment plants (WWTP) and stormwater drainage systems were the primary sources of bioavailable dissolved organic carbon. Consequently, planktonic bacterial production and especially extracellular enzyme activity increased downstream of those effluents showing local peaks. (4) Micropollutants and toxicity-related stress: WWTPs were the predominant source of toxic stress, resulting in a rapid increase of the toxicity for invertebrates and algae with only one order of magnitude below the acute toxic levels. This toxicity correlates negatively with the contribution of invertebrate species being sensitive towards pesticides (SPEARpesticides index), probably contributing to the loss of biodiversity recorded in response to WWTP effluents. Our longitudinal approach highlights the potential of coordinated community efforts in supplementing established monitoring methods to tackle the complex phenomenon of multiple stress.

9.
Sci Total Environ ; 768: 144456, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33453533

RESUMO

Accidental spills or illegal discharges of pesticides in aquatic ecosystems can lead to exposure levels that strongly exceed authorized pesticide concentrations, causing major impacts on aquatic ecosystems. Such short-term events often remain undetected in regular monitoring programs with infrequent sampling. In early spring 2015, we identified a catastrophic pesticide spill with the insecticide cypermethrin in the Holtemme River, Germany. Based on existing pre-event macroinvertebrate community data, we monitored the effects and recovery of the macroinvertebrate community for more than two years after the spill. Strong short-term effects were apparent for all taxa with the exception of Chironomidae and Tubificidae. Effects could also be observed on the community level as total abundance, taxa number and biomass strongly decreased. Total abundance and taxa number showed a fast recovery. Regarding long-term effects, the total biomass remained substantially below the pre-contamination level (76%) until the end of the study. Also the abundances of three taxa (Gammarus, Leuctra, Limnius Ad.) did not return to levels prior to the spill even after 26 months. This lack of the taxon-specific recovery was likely due to their long generation time and a low migration ability due to a restricted connectivity between the contaminated site and uncontaminated stream sections. These factors proved to be stronger predictors for the recovery than the pesticide tolerance. We revealed that the biological indicators SPEARpesticides and share of Ephemeroptera, Plecoptera and Trichoptera (EPT) are not suitable for the identification of such extreme events, when nearly all taxa are eradicated. Both indicators are functioning only when repeated stressors initiate long-term competitive replacement of sensitive by insensitive taxa. We conclude that pesticide spills can have significant long-term effects on stream macroinvertebrate communities. Regular ecological monitoring is imperative to identify such ecosystem impairments, combined with analytical chemistry methods to identify the potential sources of spills.


Assuntos
Inseticidas , Rios , Animais , Ecossistema , Monitoramento Ambiental , Alemanha , Inseticidas/toxicidade , Invertebrados
10.
Sci Total Environ ; 743: 140582, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32732007

RESUMO

The composition of littoral macroinvertebrate communities in lakes is governed by multiple natural and anthropogenic environmental influences interacting at different spatial scales. Since ecological assessment methods using littoral macroinvertebrates should respond specifically to a single stressor, knowledge on the unique effects of a given stressor is necessary. To effectively disentangle the effects of hydromorphology and trophic state requires analysing macroinvertebrate communities at lake sites with the full range of both stressors. We used a dataset of 98 lakes encompassing the entire gradient of geographical locations, lake types, hydromorphological degradation and trophic states in Central European lakes. We studied the unique and joint effects of hydromorphology and trophic state on macroinvertebrate richness, community composition and the Littoral Invertebrate Multimetric Index based on Composite Sampling (LIMCO). Variation partitioning analyses were conducted to test the importance of hydromorphology relative to trophic state across and within hydromorphological states (natural shorelines, hard and soft shore modifications) and trophic states (oligotrophic to hypertrophic states). At natural, hard and soft modification sites, hydromorphology explained 10, 16 and 19%, respectively, of the average unique variation of diversity, community composition and the LIMCO index, whereas trophic state explained on average 2, 5 and 5%, respectively. Similarly, in low, medium and high trophic state lakes, hydromorphology explained 10, 15 and 7%, respectively, of the average unique variation of diversity, community composition and the LIMCO index, whereas trophic state explained on average 0.3, 3 and 6%, respectively. Our results demonstrate that littoral hydromorphology was a more important driver of macroinvertebrate diversity, community composition and LIMCO than trophic state across hydromorphological states and trophic states. This indicates that multiple stressors in lakes act hierarchically on littoral macroinvertebrate communities and that the hydromorphological degradation of littoral zones is the primary driver for altered communities.


Assuntos
Ecossistema , Monitoramento Ambiental , Animais , Eutrofização , Invertebrados , Lagos
11.
Water Res ; 164: 114919, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31382154

RESUMO

Fluvial networks are globally relevant for the processing of dissolved organic matter (DOM). To investigate the change in molecular DOM diversity along the river course, high-field FTICR mass spectrometry and NMR spectroscopy of riverine DOM as well as bacterial abundance and activity were measured in a third order stream along a land-use gradient from pristine, agricultural to urban landscapes. DOM composition showed a clear evolution along the river course with an initial decrease of average oxidation and unsaturation followed by an increased relative abundance of CHNO and CHOS compounds introduced by agriculture and waste water, respectively. DOM composition was dominated by rather unsaturated CHO compounds (H/C ≤ 1) in headwaters and by more aliphatic molecules at downstream sites. Oxygenated functional groups shifted from aromatic ethers and hydroxyl groups to aliphatic carboxylic acids and aliphatic hydroxyl groups. This massive dislocation of oxygen significantly increased the diversity of atomic environments in branched aliphatic groups from headwater to downstream DOM. Mass spectra of DOM enabled the detection of compositional relationships to bacterial abundance and activity which was positively related to more aliphatic components (H/C > 1) and negatively related to unsaturated components. FTICR mass and NMR spectra corroborated the initial decline in DOM molecular diversity predicted by the River Continuum Concept (RCC) but demonstrated an anthropogenic increase in the molecular diversity of DOM further downstream. While the high DOM molecular diversity in first order headwater streams was the result of small scale ecosystem plurality, agriculture and waste water treatment introduced many components in the lower reaches. These anthropogenic influences together with massive bacterial oxidation of DOM contributed to a growth of molecular diversity of downstream DOM whose composition and structure differed entirely from those found in pristine headwaters.


Assuntos
Ecossistema , Compostos Orgânicos , Agricultura , Bactérias , Rios
12.
Environ Sci Technol ; 52(14): 7962-7971, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29898597

RESUMO

Agricultural and urban land use has dramatically increased over the last century and one consequence is the release of anthropogenic chemicals into aquatic ecosystems. One of the rarely studied consequences is the effect of land use change on internal concentrations of organic micropollutants (OMPs) in aquatic invertebrates and its effects on their genotype diversity. Here, we applied population genetic and internal concentrations of OMPs analyses to determine evolutionary implications of chemical pollution on Gammarus pulex populations from a natural and two agricultural streams. Along 14 consecutive months sampled, 26 different OMPs were quantified in G. pulex extracts with the highest number, concentration, and toxic pressure in the anthropogenically stressed stream ecosystems. Our results indicate distinct internal OMP profiles and changes in both genetic variation and genetic structure in streams affected by anthropogenic activity. Genetic variation was attributed to chemical pollution whereas changes in the genetic structure were attributed to environmental disturbances, such as changes in discharge in the impacted stream ecosystems, which worked both independently and in tandem. Finally, we conclude that human-impacted streams are subjected to severe alterations in their population genetic patterns compared to nonimpacted stream ecosystems.


Assuntos
Ecossistema , Rios , Animais , Monitoramento Ambiental , Genética Populacional , Invertebrados
13.
Sci Total Environ ; 615: 773-783, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28992502

RESUMO

Elevated nitrate concentrations are a thread for water supply and ecological integrity in surface water. Nitrate fluxes obtained by standard monitoring protocols at the catchment outlet strongly integrate spatially and temporally variable processes such as mobilization and turnover. Consequently, inference of dominant nitrate sources is often problematic and challenging in terms of effective river management and prioritization of measures. Here, we combine a spatially highly resolved assessment of nitrate concentration and fluxes along a mesoscale catchment with four years of monitoring data at two representative sites. The catchment is characterized by a strong land use gradient from pristine headwaters to lowland sub-catchments with intense agricultural land use and wastewater sources. We use nitrate concentrations in combination with hydrograph separation and isotopic fingerprinting methods to characterize and quantify nitrate source contribution. The hydrological analysis revealed a clear dominance of base flow during both campaigns. However, the absolute amounts of discharge differed considerably from one another (outlet: 1.42m3s-1 in 2014, 0.43m3s-1 in 2015). Nitrate concentrations are generally low in the pristine headwaters (<3mgL-1) and increase downstream (15 to 16mgL-1) due to the contribution of agricultural and wastewater sources. While the agricultural contribution did not vary in terms of nitrate concentration and isotopic signature between the years, the wastewater contribution strongly increased with decreasing discharge. Wastewater-borne nitrate load in the entire catchment ranged between 19% (2014) and 39% (2015). Long-term monitoring of nitrate concentration and isotopic composition in two sub-catchment exhibits a good agreement with findings from spatially monitoring. In both datasets, isotopic composition indicates that denitrification plays only a minor role. The spatially highly resolved monitoring approach helped to pinpoint hot spots of nitrate inputs into the stream while the long-term information allowed to place results into the context of intra-annual variability.

14.
PLoS One ; 11(5): e0155562, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27167517

RESUMO

Hydrogen stable isotopes (δ2H) have recently been used to complement δ13C and δ15N in food web studies due to their potentially greater power to separate sources of organic matter in aquatic food webs. However, uncertainties remain regarding the use of δ2H, since little is known about the potential variation in the amount of exchangeable hydrogen (Hex) among common sample materials or the patterns of δ2H when entire food webs are considered. We assessed differences in Hex among the typical sample materials in freshwater studies and used δ2H, δ13C and δ15N to compare their effectiveness in tracing allochthonous matter in food webs of two small temperate lakes. Our results showed higher average amounts of Hex in animal tissues (27% in fish and macroinvertebrates, 19% in zooplankton) compared to most plant material (15% in terrestrial plants and 8% in seston/periphyton), with the exception of aquatic vascular plants (23%, referred to as macrophytes). The amount of Hex correlated strongly with sample lipid content (inferred from C:N ratios) in fish and zooplankton samples. Overall, the three isotopes provided good separation of sources (seston, periphyton, macrophytes and allochthonous organic matter), particularly the δ2H followed by δ13C. Aquatic macrophytes revealed unexpectedly high δ2H values, having more elevated δ2H values than terrestrial organic matter with direct implications for estimating consumer allochthony. Organic matter from macrophytes significantly contributed to the food webs in both lakes highlighting the need to include macrophytes as a potential source when using stable isotopes to estimate trophic structures and contributions from allochthonous sources.


Assuntos
Eutrofização , Peixes/fisiologia , Cadeia Alimentar , Plantas/metabolismo , Zooplâncton/fisiologia , Animais , Isótopos de Carbono , Alemanha , Hidrogênio/metabolismo , Marcação por Isótopo , Lagos , Isótopos de Nitrogênio
15.
Environ Sci Pollut Res Int ; 22(13): 9864-76, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25647497

RESUMO

The aim of this study was to assess land use effects on the density, biomass, and instantaneous secondary production (IP) of benthic invertebrates in a fifth-order tropical river. Invertebrates were sampled at 11 stations along the Rio das Mortes (upper Rio Grande, Southeast Brazil) in the dry and the rainy season 2010/2011. Invertebrates were counted, determined, and measured to estimate their density, biomass, and IP. Water chemical characteristics, sediment heterogeneity, and habitat structural integrity were assessed in parallel. Total invertebrate density, biomass, and IP were higher in the dry season than those in the rainy season, but did not differ significantly among sampling stations along the river. However, taxon-specific density, biomass, and IP differed similarly among sampling stations along the river and between seasons, suggesting that these metrics had the same bioindication potential. Variability in density, biomass, and IP was mainly explained by seasonality and the percentage of sandy sediment in the riverbed, and not directly by urban or agricultural land use. Our results suggest that the consistently high degradation status of the river, observed from its headwaters to mouth, weakened the response of the invertebrate community to specific land use impacts, so that only local habitat characteristics and seasonality exerted effects.


Assuntos
Invertebrados/fisiologia , Rios/química , Poluição Química da Água , Qualidade da Água , Agricultura , Animais , Biomassa , Brasil , Conservação dos Recursos Naturais , Ecossistema , Densidade Demográfica , Chuva , Estações do Ano , Clima Tropical , Urbanização
16.
Environ Monit Assess ; 185(11): 9221-36, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23780728

RESUMO

The Bode catchment (Germany) shows strong land use gradients from forested parts of the National Park (23% of total land cover) to agricultural (70%) and urbanised areas (7%). It is part of the Terrestrial Environmental Observatories of the German Helmholtz association. We performed a biogeochemical analysis of the entire river network. Surface water was sampled at 21 headwaters and at ten downstream sites, before (in early spring) and during the growing season (in late summer). Many parameters showed lower concentrations in headwaters than in downstream reaches, among them nutrients (ammonium, nitrate and phosphorus), dissolved copper and seston dry mass. Nitrate and phosphorus concentrations were positively related to the proportion of agricultural area within the catchment. Punctual anthropogenic loads affected some parameters such as chloride and arsenic. Chlorophyll a concentration and total phosphorus in surface waters were positively related. The concentration of dissolved organic carbon (DOC) was higher in summer than in spring, whereas the molecular size of DOC was lower in summer. The specific UV absorption at 254 nm, indicating the content of humic substances, was higher in headwaters than in downstream reaches and was positively related to the proportion of forest within the catchment. CO2 oversaturation of the water was higher downstream compared with headwaters and was higher in summer than in spring. It was correlated negatively with oxygen saturation and positively with DOC concentration but negatively with DOC quality (molecular size and humic content). A principle component analysis clearly separated the effects of site (44%) and season (15%), demonstrating the strong effect of land use on biogeochemical parameters.


Assuntos
Monitoramento Ambiental , Rios/química , Poluentes Químicos da Água/análise , Agricultura , Carbono/análise , Clorofila/análise , Clorofila A , Alemanha , Substâncias Húmicas/análise , Nitratos/análise , Nitrogênio/análise , Fósforo/análise , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA