Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Adv Sci (Weinh) ; : e2401780, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666391

RESUMO

Creating specific noble metal/metal-organic framework (MOF) heterojunction nanostructures represents an effective strategy to promote water electrolysis but remains rather challenging. Herein, a heterojunction electrocatalyst is developed by growing Ir nanoparticles on ultrathin NiFe-MOF nanosheets supported by nickel foam (NF) via a readily accessible solvothermal approach and subsequent redox strategy. Because of the electronic interactions between Ir nanoparticles and NiFe-MOF nanosheets, the optimized Ir@NiFe-MOF/NF catalyst exhibits exceptional bifunctional performance for the hydrogen evolution reaction (HER) (η10 = 15 mV, η denotes the overpotential) and oxygen evolution reaction (OER) (η10 = 213 mV) in 1.0 m KOH solution, superior to commercial and recently reported electrocatalysts. Density functional theory calculations are used to further investigate the electronic interactions between Ir nanoparticles and NiFe-MOF nanosheets, shedding light on the mechanisms behind the enhanced HER and OER performance. This work details a promising approach for the design and development of efficient electrocatalysts for overall water splitting.

2.
Chem Asian J ; : e202400169, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619064

RESUMO

The pincer complexes [NiIIBr(CNC)]Br (4), [CrIIIBr3(CNC)] (5a) and [CrIIIBr2.3Cl0.7(CNC)] (5b), where CNC = 3,3'-(pyridine-2,6-diyl)bis(1-mesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene), were obtained from the novel ligand CNC, generated in situ from the precursor (CHNCH)Br2 and [NiIIBr2(PPh3)2] or from [CrII{N(SiMe3)2}2(THF)2] and (CHNCH)Br2 by aminolysis, respectively. The tetrahedrally distorted square planar (τ4 ≅ 0.30) geometry and the singlet ground state of Ni in 4 were attributed to steric constraints of the CNC backbone. Computational methods highlighted the dependence of the coordination geometry and the singlet-triplet energy difference on the size of the N-substituent of the tetrahydropyrimidine wingtips and contrasted it to the situation in 5-membered imidazolin-2-ylidene pincer analogues. The octahedral CrIII metal center in 5a and 5b is presumably formed after one electron oxidation from CH2Cl2. 4/MAO and 5a/MAO were catalysts of moderate activity for the oligomerization and polymerization of ethylene, respectively. The analogous (CH^N^CH)Br2 precursor, where (CH^N^CH) = 3,3'-(pyridine-2,6-diylbis(methylene))bis(1-mesityl-3,4,5,6-tetrahydropyrimidin-1-ium), was also prepared, however its coordination chemistry was not studied due to the inherent instability of the resulting free C^N^C ligand.

3.
Chem Soc Rev ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597808

RESUMO

Olefin [2+2] photocycloaddition reactions based on coordination-bond templates provide numerous advantages for the selective synthesis of cyclobutane compounds. This review outlines the recent advances in the design and construction of single crystal platforms of olefinic coordination polymers for precise organic synthesis, in situ exploration of reaction mechanisms, and possible developments as comprehensively as possible. Numerous examples are presented to illustrate how the arrangements of the olefin pairs influence the solid-state photoreactivity and examine the types of cyclobutane products. Furthermore, the photocycloaddition reaction mechanisms are investigated by combining advanced techniques such as single crystal X-ray diffraction, powder X-ray diffraction, nuclear magnetic resonance, infrared spectroscopy, fluorescence spectroscopy, laser scanning confocal microscopy and theoretical calculations. Finally, potential applications resulting from promising physicochemical properties before and after photoreactions are discussed, and existing challenges and possible solutions are also proposed.

4.
Nat Commun ; 14(1): 7766, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012167

RESUMO

Using highly sensitive and selective in situ techniques to investigate the dynamics of intermediates formation is key to better understand reaction mechanisms. However, investigating the early stages of solid-state reactions/transformations is still challenging. Here we introduce in situ fluorescence spectroscopy to observe the evolution of intermediates during a two-step [2 + 2] photocycloaddition process in a coordination polymer platform. The structural changes and kinetics of each step under ultraviolet light irradiation versus time are accompanied by the gradual increase-decrease of intensity and blue-shift of the fluorescence spectra from the crystals. Monitoring the fluorescence behavior using a laser scanning confocal microscope can directly visualize the inhomogeneity of the photocycloaddition reaction in a single crystal. Theoretical calculations allow us to rationalize the fluorescence behavior of these compounds. We provide a convenient strategy for visualizing the solid-state photocycloaddition dynamics using fluorescence spectroscopy and open an avenue for kinetic studies of a variety of fast reactions.

5.
J Am Chem Soc ; 145(46): 25103-25108, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37938934

RESUMO

Although interlocked three-dimensional molecules display unique properties associated with their spatial structures, their synthesis and study of their host-guest properties remain challenging. We report the formation of a novel [2]catenane, [Et4N]@[(Tp*WS3Cu3Cl)2(cis-bpype)3]2(OTf)5 ([Et4N][1](OTf)5), by self-assembly of the cluster node [Tp*WS3Cu3Cl]+ and the organic linker (Z)-1,2-diphenyl-1,2-bis(4-(pyridin-4-yl)phenyl)ethene (cis-bpype). Single-crystal X-ray and NMR analyses established that [1]4+ is formed by the interpenetration of two cluster-organic cages. Unique cation-in-cation host-guest complexes were observed with this catenane. The crystalline, empty catenane was formed by taking advantage of the electrostatic repulsion-induced weak binding of the host. Encapsulation experiments also reveal that the empty catenane can adaptively encapsulate cations such as [Et4N]+ and [Pr4N]+ in the cross cavity but is unable to encapsulate [Bu4N]+ and [Me4N]+, although the size of the latter is compatible with that of the cavity. Theoretical calculations and volume analysis allow to unravel the ingenious role of catenane structures and the interplay between electrostatic repulsion and attractive noncovalent interactions for size-specific recognition behavior in host-guest systems involving species with similar electric charges.

6.
Dalton Trans ; 52(29): 9908-9912, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37458362

RESUMO

The 4-RN-1,3-Ar2-imidazolium salt, R = iPr, tBu, Ar = Mes, Dipp, Mes = mesityl, Dipp = 2,6-bis-diisopropyl-phenyl was metalated by AuI at the C2-, C5- and 4-RN positions depending on the reactants and conditions employed; a rare direct rearrangement of a AuI aminide to an abnormal imidazol-5-ylidene AuI complex was also observed and based on a DFT study it may involve TfO- facilitated H+ transfer.

7.
J Am Chem Soc ; 145(18): 9982-9987, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37126789

RESUMO

Although the synthesis of low-dimensional metal sulfides by assembling cluster-based units is expected to promote the development of optical materials and models of enzyme active centers such as dinitrogenase, it is faced with limited assembly methodology. Herein we present a cut-to-link strategy to generate high-nuclearity assemblies, inspired by the formation of a Z-type dimer of the W-S-Cu analogues of PN cluster through in situ release of active linkers. Four new compounds with structures based on the same {Tp*WS3Cu3} incomplete cubane-like units were obtained using varied combinations of mild reagents. Open-aperture Z-scan measurements demonstrated the highest-nuclearity complex has the largest nonlinear optical absorption coefficient among discrete cluster-based materials reported to date. This approach enables building high-nuclearity metal sulfide clusters through cluster-based building blocks and opens a way to the design and exploration of materials based on well-identified building blocks.

8.
Angew Chem Int Ed Engl ; 62(20): e202302429, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36920791

RESUMO

We report a unique vinyl coordination polymer (CP), [Zn(4-Fb)2 (tkpvb)]n (1, 4-HFb=4-fluorobenzoic acid, tkpvb=1,2,4,5-tetrakis(4-pyridylvinyl)benzene) that undergoes a rare photopolymerization reaction to form a two-dimensional CP integrated with a one-dimensional linear organic polymer. Upon light irradiation at different wavelengths, 1 exhibits an unprecedented phenomenon of photoinduced nonlinear lattice expansion. 1 can be uniformly dispersed in polyvinyl alcohol (PVA) to form the composite film of 1-PVA. When this film is exposed to UV light, internal minute stresses within crystallites are released by lattice expansion, resulting in a variety of photopolymerization-driven macroscopic mechanical motions. The findings provide new insights into the conversion of small lattice expansions of CPs into macroscopic mechanical motions based on photopolymerization reactions, which can promote the development of CPs-based smart photoactuators in the burgeoning field of microrobotics.

9.
Chemistry ; 29(24): e202203557, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36583988

RESUMO

Carbonylmetallates [m]- , such as [MoCp(CO)3 ]- , [Mn(CO)5 ]- , [Co(CO)4 ]- , have long been successfully used in the preparation of hundreds of metal-metal bonded carbonyl complexes and clusters, in particular of the heterometallic type. We focus here on situations where [m]- can be viewed as a terminal, doubly or even triply bridging metalloligand, developing metal-metal interactions with one, two or three metal centers M, respectively. With metals M from the Groups 10-12, it is not straightforward or even impossible to rationalize the structure of the resulting clusters by applying the well-known Wade-Mingos rules. A very simple but global approach is presented to rationalize structures not obeying usual electron-counting rules by considering the anionic building blocks [m]- as metalloligands behaving formally as potential 2-, 4- or 6-electron donors, similarly to what is typically encountered with for example halido ligands. Qualitative and theoretical arguments by using DFT calculations highlight similarities between seemingly unrelated metal complexes and clusters and also entail a predicting power with high synthetic potential.

10.
Natl Sci Rev ; 9(7): nwab197, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35958682

RESUMO

Most metal-organic frameworks (MOFs) hardly maintain their physical and chemical properties after exposure to acidic, neutral, or alkaline aqueous solutions, resulting in insufficient stability, therefore limiting their applications. Thus, the design and synthesis of stable size/morphology-controlled MOF nanocrystals is critical but challenging. In this study, dual-ligand and hard-soft-acid-base strategies were used to fabricate a variety of 3D pillared-layer [Ni(thiophene-2,5-dicarboxylate)(4,4'-bipyridine)]n MOF nanocrystals (1D nanofibers, 2D nanosheets and 3D aggregates) with controllable morphology by varying the concentration of 4,4'-bipyridine and thus controlling the crystal growth direction. Owing to the shorter ion diffusion length, enhanced electron/ion transfer and strong interactions between thiophene-2,5-dicarboxylate and 4,4'-bipyridine, the 2D nanosheets showed much larger specific capacitance than 1D nanofibers and 3D aggregates. A single device with an output voltage as high as 3.0 V and exceptional cycling performance (95% of retention after 5000 cycles at 3 mA cm-2) was realized by configuring two aqueous asymmetric supercapacitive devices in series. The excellent cycling property and charge-discharge mechanism are consistent with the hard-soft-acid-base theory.

11.
Chem Commun (Camb) ; 58(72): 10016-10019, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35971977

RESUMO

A strategy of in situ depositing 2D COFs on heterogeneous catalysts was reported for the first time to suppress the agglomeration and sintering of the supported metal nanoparticles during hydrogenation processes. The COF-decorated nanocatalysts exhibited excellent stability in various hydrogenation reactions including the reduction of dimethyl oxalate (DMO), furfural, and other chemicals.

12.
Dalton Trans ; 51(30): 11226-11230, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35861279

RESUMO

The presence of a permethylated α-cyclodextrin (α-CD) cavity in a chelating P,N ligand promotes exclusive formation of 1 : 1 ligand/metal complexes. In MX2 complexes, one of the two halido ligands is forced to reside inside the CD hollow while the second one is pointing outside. Unlike its cavity-free analogue, a Ni(II) complex of the CD ligand is a highly selective precatalyst for ethylene dimerisation (96% C4 selectivity with up to 95% of 1-butene within the C4 fraction).


Assuntos
Quelantes , Níquel , Etilenos , Ligantes , Modelos Moleculares
13.
J Colloid Interface Sci ; 624: 443-449, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35667206

RESUMO

The tailoring of intrinsic electronic structures and extrinsic hierarchical morphologies is widely recognized as a promising strategy to enhance the oxygen evolution reaction (OER) performance of electrocatalysts. It is generally accepted that the surface of the transition metal-based electrocatalyst exposed to the alkaline electrolyte is highly oxidized and reconstructed, forming an amorphous layer during the electrochemical process. This amorphous active phase is favorable for OER due to its abundant dangling bonds, vacancies and defects, which is tricky to be rationally prepared by conventional methods. Herein, a facile access to crystalline / amorphous NiOx microbelt superstructure of core-shell nanoparticles is presented, which is assembled of crystalline NiO nanoparticles coated with amorphous Ni3+/Ni2+ oxide layer. Electrochemical activation induces the in-situ surface reconstruction of the NiOx microbelt superstructure, resulting in a thicker outer amorphous Ni3+/Ni2+ layer further facilitating OER. Owing to the optimization of the in-situ surface reconstruction, the NiOx microbelt superstructure with crystalline / amorphous dual phases exhibited both high electrocatalytic activity and superior durability for OER, with the original microbelt superstructure retained after 50000 s I-t test.

14.
Chemistry ; 28(41): e202200507, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35543286

RESUMO

We report the first examples of metal-promoted double geminal activation of C(sp3 )-H bonds of the N-CH2 -N moiety in an imidazole-type heterocycle, leading to nickel and palladium N-heterocyclic carbene complexes under mild conditions. Reaction of the new electron-rich diphosphine 1,3-bis((di-tert-butylphosphaneyl)methyl)-2,3-dihydro-1H-benzo[d]imidazole (1) with [PdCl2 (cod)] occurred in a stepwise fashion, first by single C-H bond activation yielding the alkyl pincer complex [PdCl(PC sp 3 H P)] (3) with two trans phosphane donors and a covalent Pd-C sp 3 bond. Activation of the C-H bond of the resulting α-methine C sp 3 H-M group occurred subsequently when 3 was treated with HCl to yield the NHC pincer complex [PdCl(PCNHC P)]Cl (2). Treatment of 1 with [NiBr2 (dme)] also afforded a NHC pincer complex, [NiBr(PCNHC P)]Br (6), but the reactions leading to the double geminal C-H bond activation of the N-CH2 -N group were too fast to allow identification or isolation of an intermediate analogous to 3. The determination of six crystal structures, the isolation of reaction intermediates and DFT calculations provided the basis for suggesting the mechanism of the stepwise transformation of a N-CH2 -N moiety in the N-CNHC -N unit of NHC pincer complexes and explain the key differences observed between the Pd and Ni chemistries.

15.
Nat Commun ; 13(1): 2847, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606507

RESUMO

Solid-state photochemical reactions of olefinic compounds have been demonstrated to represent powerful access to organic cyclic molecules with specific configurations. However, the precise control of the stereochemistry in these reactions remains challenging owing to complex and fleeting configuration transformations. Herein, we report a unique approach to control the regiospecific configurations of C = C groups and the intermediates by varying temperatures in multiple-step thermal/photoinduced reactions, thus successfully realizing reversible ring closing/opening changes using a single-crystal coordination polymer platform. All stereochemical transitions are observed by in situ single-crystal X-ray diffraction, powder X-ray diffraction and infrared spectroscopy. Density functional theory calculations allow us to rationalize the mechanism of the synergistic thermal/photoinduced transformations. This approach can be generalized to the analysis of the possible configuration transformations of functional groups and intermediates and unravel the detailed mechanism for any inorganic, organic and macromolecular reactions susceptible to incorporation into single-crystal coordination polymer platforms.

17.
Research (Wash D C) ; 2022: 9819343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282470

RESUMO

Designing and building unique cage assemblies attract increasing interest from supramolecular chemists but remain synthetically challenging. Herein, we propose the use of a flexible vertex with adjustable angles to selectively form highly distorted tetrahedral and octahedral cages, for the first time, in which the flexible vertex forms from the synergistic effect of coordination and covalent interactions. The inherent interligand angle of the vertex can be modulated by guest anions present, which allows for the fine-tuning of different cage geometries. Furthermore, the reversible structural transformation between tetrahedral and octahedral cages was achieved by anion exchange monitored by mass spectrometric technique, the smaller anions favoring tetrahedral cages, while the larger anions supporting octahedral cages. Additionally, the KBr-based cage thin films exhibited prominent enhancement of their third-order NLO responses in two or three orders of magnitude compared to those obtained for their corresponding solutions. This work not only provides a new methodology to build irregular polyhedral structures in a controlled and tunable way but also provides access to new kinds of promising functional optical materials.

18.
ACS Appl Mater Interfaces ; 14(13): 15133-15140, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35324163

RESUMO

Metal-organic framework (MOF) nanosheets with attractive chemical and structural properties have been considered as prominent oxygen evolution reaction (OER) electrocatalysts, while the insufficient exposed active sites and low electrical conductivity of MOFs limit their electrocatalytic activity and further industrial applications. Herein, a unique strategy to remarkably boost electrocatalytic OER activity of one Ni-based MOF is developed by the simultaneous incorporation of Fe3+ ions and BF4- anions within its layer structure. The optimized electrocatalyst NiFe-MOF-BF4--0.3 NSs shows superior OER activity with a required ultralow overpotential of 237 mV at 10 mA cm-2, a small Tafel slope of 41 mV dec-1, and outstanding stability in an alkaline medium. The experimental and density functional theory (DFT) calculation results verify that the interactions between metal (M) ions and BF4- anions (defined as M···F, M = Ni or Fe) in this catalyst can adjust the adsorption abilities of oxygen intermediates and lower the free energy barrier of the potential-determining step by tailoring its electronic structure, thereby remarkably boosting its OER activity. This protocol provides new insights into surface and structure engineering of 2D MOFs, leading to greatly enhanced electrocatalytic OER performance.

19.
J Colloid Interface Sci ; 614: 130-137, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35091142

RESUMO

The poor conductivity, unsatisfactory stability and easy aggregation of metal-organic framework (MOF) nanomaterials have been recognized as the main reasons that prevent their practical application. Here, we report the highly conductive and cyclic-stable Ti3C2 MXene@pillared-layer [Ni(thiophene-2,5-dicarboxylate)(4,4'-bipyridine)]n MOF composites (MXene@Ni-MOF). Based on the hard-soft-acid-base principle, the pillared-layer Ni-MOF porous structure with Ni-N coordination bonds confer better structural stability. The Ni-MOF nanosheets are immobilized by the MXene, leading to fast charge transfer between the Ni-MOF and MXene, solving the problem of poor conductivity of Ni-MOF, while avoiding the agglomeration of Ni-MOF nanosheets. Moreover, the strong interaction between the organic ligands of Ni-MOF and surface functional groups of MXene plays a key role: it reduces the exposure of surface groups of MXene, limits the oxidation of MXene, and increases its layer spacing, thus facilitating the rapid ion transport. The MXene@Ni-MOF exhibits a high specific capacitance (979 F g-1 at 0.5 A g-1) and the new aqueous asymmetric supercapacitor device displays an excellent cycling property with only 2% decay after 5000 cycles.

20.
Chemistry ; 28(10): e202104234, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34984746

RESUMO

Using a pincer platform based on a bridgehead NHC donor with functional side arms, the combined effect of increased flexibility in six-membered pyrimidine-type heterocycles compared to the more often studied five-membered imidazole, and rigidity of phosphane side arms was examined. The unique features observed include: 1) the reaction of the azolium Csp2 -H bond with [Ni(cod)2 ] affording a carbanionic ligand in [NiCl(PCsp3 H P)] (8) rather than a carbene; 2) its transformation into the NHC, hydrido complex [NiH(PCNHC P)]PF6 (9) upon halide abstraction; 3) ethylene insertion into the Ni-H bond of the latter and ethyl migration to the N-C-N carbon atom of the heterocycle in [Ni(PCEt P)]PF6 (10); and 4) an unprecedented C-P bond activation transforming the P-CNHC -P pincer ligand of 8 in a C-CNHC -P pincer and a terminal phosphanido ligand in [Ni(PPh2 )(CCNHC P)] (15). The data are supported by nine crystal structure determinations and theoretical calculations provided insights into the mechanisms of these transformations, which are relevant to stoichiometric and catalytic steps of general interest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA