Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Tree Physiol ; 37(12): 1739-1751, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28541567

RESUMO

Epigenetic modifications can yield information about connections between genotype, phenotype variation and environmental conditions. Bud dormancy release in temperate perennial fruit trees depends on internal and environmental signals such as cold accumulation and photoperiod. Previous investigations have noted the participation of epigenetic mechanisms in the control of this physiological process. We examined whether epigenetic modifications were modulated in MADS-box genes, potential candidates for the regulation of bud dormancy and flowering in sweet cherry (Prunus avium L.). We identified and cloned two MADS-box genes homologous to the already-characterized dormancy regulators DORMANCY-ASSOCIATED MADS-box (DAM3 and DAM5) from Prunus persica (L.) Batsch. Bisulfite sequencing of the identified genes (PavMADS1 and PavMADS2), Methylated DNA Immunoprecipitation and small RNA deep sequencing were performed to analyze the presence of DNA methylations that could be guided by non-coding RNAs in the floral buds exposed to differential chilling hours. The results obtained reveal an increase in the level of DNA methylation and abundance of matching small interference RNAs (siRNAs) in the promoter of PavMADS1 when the chilling requirement is complete. For the first intron and 5' UTR of PavMADS1, de novo DNA methylation could be associated with the increase in the abundance of 24-nt siRNA matching the promoter area. Also, in the second large intron of PavMADS1, maintenance DNA methylation in all cytosine contexts is associated with the presence of homologous siRNAs in that zone. For PavMADS2, only maintenance methylation was present in the CG context, and no matching siRNAs were detected. Silencing of PavMADS1 and PavMADS2 coincided with an increase in Flowering Locus T expression during dormancy. In conclusion, DNA methylations and siRNAs appear to be involved in the silencing of PavMADS1 during cold accumulation and dormancy release in sweet cherry.


Assuntos
Prunus avium/genética , Prunus avium/metabolismo , Metilação de DNA/genética , Metilação de DNA/fisiologia , Epigênese Genética/genética , Epigênese Genética/fisiologia , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
2.
Int J Genomics ; 2016: 4395153, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27123440

RESUMO

Epigenetic regulation plays important biological roles in plants, including timing of flowering and endosperm development. Little is known about the mechanisms controlling heterochrony (the change in the timing or rate of developmental events during ontogeny) in Eucalyptus globulus. DNA methylation has been proposed as a potential heterochrony regulatory mechanism in model species, but its role during the vegetative phase in E. globulus has not been explored. In order to investigate the molecular mechanisms governing heterochrony in E. globulus, we have developed a workflow aimed at generating high-resolution hypermethylome and hypomethylome maps that have been tested in two stages of vegetative growth phase: juvenile (6-month leaves) and adult (30-month leaves). We used the M&M algorithm, a computational approach that integrates MeDIP-seq and MRE-seq data, to identify differentially methylated regions (DMRs). Thousands of DMRs between juvenile and adult leaves of E. globulus were found. Although further investigations are required to define the loci associated with heterochrony/heteroblasty that are regulated by DNA methylation, these results suggest that locus-specific methylation could be major regulators of vegetative phase change. This information can support future conservation programs, for example, selecting the best methylomes for a determinate environment in a restoration project.

3.
Mol Ther ; 21(7): 1403-12, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23712038

RESUMO

Cancer development involves changes driven by the epigenetic machinery, including nucleosome positioning. Recently, the concept that adenoviral replication may be driven by tumor specific promoters (TSPs) gained support, and several conditionally replicative adenoviruses (CRAd) exhibited therapeutic efficacy in clinical trials. Here, we show for the first time that placing a nucleosome positioning sequence (NPS) upstream of a TSP combined with Wnt-responsive motifs (pART enhancer) enhanced the TSP transcriptional activity and increased the lytic activity of a CRAd. pART enhanced the transcriptional activity of the gastrointestinal cancer (GIC)-specific REG1A promoter (REG1A-pr); moreover, pART also increased the in vitro lytic activity of a CRAd whose replication was driven by REG1A-Pr. The pART enhancer effect in vitro and in vivo was strictly dependent on the presence of the NPS. Indeed, deletion of the NPS was strongly deleterious for the in vivo antitumor efficacy of the CRAd on orthotopically established pancreatic xenografts. pART also enhanced the specific activity of other heterologous promoters; moreover, the NPS was also able to enhance the responsiveness of hypoxia- and NFκB-response elements. We conclude that NPS could be useful for gene therapy approaches in cancer as well as other diseases.


Assuntos
Adenoviridae/genética , Nucleossomos/genética , Animais , Linhagem Celular Tumoral , Feminino , Terapia Genética , Células HT29 , Humanos , Masculino , Camundongos Nus , Terapia Viral Oncolítica , Neoplasias Pancreáticas/terapia , Regiões Promotoras Genéticas/genética , Replicação Viral/genética , Replicação Viral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
PLoS One ; 6(4): e18562, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21494638

RESUMO

BACKGROUND: Increased expression of the cyclooxygenase-2 enzyme (COX2) is one of the main characteristics of gastric cancer (GC), which is a leading cause of death in the world, particularly in Asia and South America. Although the Wnt/ß-catenin signaling pathway has been involved in the transcriptional activation of the COX2 gene, the precise mechanism modulating this response is still unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we studied the transcriptional regulation of the COX2 gene in GC cell lines and assessed whether this phenomenon is modulated by Wnt/ß-catenin signaling. We first examined the expression of COX2 mRNA in GC cells and found that there is a differential expression pattern consistent with high levels of nuclear-localized ß-catenin. Pharmacological treatment with either lithium or valproic acid and molecular induction with purified canonical Wnt3a significantly enhanced COX2 mRNA expression in a dose- and time-dependent manner. Serial deletion of a 1.6 Kbp COX2 promoter fragment and gain- or loss-of-function experiments allowed us to identify a minimal Wnt/ß-catenin responsive region consisting of 0.8 Kbp of the COX2 promoter (pCOX2-0.8), which showed maximal response in gene-reporter assays. The activity of this pCOX2-0.8 promoter region was further confirmed by site-directed mutagenesis and DNA-protein binding assays. CONCLUSIONS/SIGNIFICANCE: We conclude that the pCOX2-0.8 minimal promoter contains a novel functional T-cell factor/lymphoid enhancer factor (TCF/LEF)-response element (TBE Site II; -689/-684) that responds directly to enhanced Wnt/ß-catenin signaling and which may be important for the onset/progression of GC.


Assuntos
Ciclo-Oxigenase 2/genética , Transdução de Sinais/genética , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/genética , Transcrição Gênica , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Ciclo-Oxigenase 2/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Transporte Proteico , Neoplasias Gástricas/patologia , Regulação para Cima/genética
5.
J Cell Biochem ; 99(4): 995-1000, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16927375

RESUMO

1alpha,25-dihydroxy vitamin D3 has a major role in the regulation of the bone metabolism as it promotes the expression of key bone-related proteins in osteoblastic cells. In recent years it has become increasingly evident that in addition to its well-established genomic actions, 1alpha,25-dihydroxy vitamin D3 induces non-genomic responses by acting through a specific plasma membrane-associated receptor. Results from several groups suggest that the classical nuclear 1alpha,25-dihydroxy vitamin D3 receptor (VDR) is also responsible for these non-genomic actions of 1alpha,25-dihydroxy vitamin D3. Here, we have used siRNA to suppress the expression of VDR in osteoblastic cells and assessed the role of VDR in the non-genomic response to 1alpha,25-dihydroxy vitamin D3. We report that expression of the classic VDR in osteoblasts is required to generate a rapid 1alpha,25-dihydroxy vitamin D3-mediated increase in the intracellular Ca(2+) concentration, a hallmark of the non-genomic actions of 1alpha,25-dihydroxy vitamin D3 in these cells.


Assuntos
Genoma/genética , Osteossarcoma/patologia , Receptores de Calcitriol/metabolismo , Vitamina D/análogos & derivados , Animais , RNA Interferente Pequeno , Ratos , Vitamina D/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA