RESUMO
Little is known about how differences in water availability within the "super humid" tropics can influence the physiology of understory plant species and the composition of understory plant communities. We investigated the variation in the physiological drought tolerances of hundreds of understory plants in dozens of plant communities across an extreme elevation and precipitation gradient. Specifically, we established 58 understory plots along a gradient of 400-3600 m asl elevation and 1000-6000 mm yr-1 rainfall in and around Manu National Park in southeastern Peru. Within the plots, we sampled all understory woody plants and measured three metrics of physiological leaf drought tolerance-turgor loss point (TLP), cuticular conductance (Gmin), and solute leakage (SL)-and assessed how the community-level means of these three traits related to the mean annual precipitation (MAP) and elevation (along the study gradient, the temperature decreases linearly, and the vapor pressure deficit increases monotonically with elevation). We did not find any correlations between the three metrics of leaf drought tolerance, suggesting that they represent independent strategies for coping with a low water availability. Despite being widely used metrics of leaf drought tolerance, neither the TLP nor Gmin showed any significant relationships with elevation or the MAP. In contrast, SL, which has only recently been developed for use in ecological field studies, increased significantly at higher precipitations and at lower elevations (i.e., plants in colder and drier habitats have a lower average SL, indicating greater drought tolerances). Our results illustrate that differences in water availability may affect the physiology of tropical montane plants and thus play a strong role in structuring plant communities even in the super humid tropics. Our results also highlight the potential for SL assays to be efficient and effective tools for measuring drought tolerances in the field.
RESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Synthesizing trait observations and knowledge across the Tree of Life remains a grand challenge for biodiversity science. Species traits are widely used in ecological and evolutionary science, and new data and methods have proliferated rapidly. Yet accessing and integrating disparate data sources remains a considerable challenge, slowing progress toward a global synthesis to integrate trait data across organisms. Trait science needs a vision for achieving global integration across all organisms. Here, we outline how the adoption of key Open Science principles-open data, open source and open methods-is transforming trait science, increasing transparency, democratizing access and accelerating global synthesis. To enhance widespread adoption of these principles, we introduce the Open Traits Network (OTN), a global, decentralized community welcoming all researchers and institutions pursuing the collaborative goal of standardizing and integrating trait data across organisms. We demonstrate how adherence to Open Science principles is key to the OTN community and outline five activities that can accelerate the synthesis of trait data across the Tree of Life, thereby facilitating rapid advances to address scientific inquiries and environmental issues. Lessons learned along the path to a global synthesis of trait data will provide a framework for addressing similarly complex data science and informatics challenges.