Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proteomics Clin Appl ; : e202400008, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39226110

RESUMO

PURPOSE: High throughput technologies have identified molecular patterns in colorectal cancer (CRC) cells, aiding in modeling responses to anti-cancer treatments. The different responses observed depend on the type of cancer, the tumour grade and the functional programme of the cancer cells. Recent studies suggest that the unfolded protein response (UPR), autophagy and apoptosis could be involved in treatment resistance mechanisms by interacting with the tumour microenvironment (TME). EXPERIMENTAL DESIGN: We analysed by LC-MS/MS the proteome of two representative colon adenocarcinoma epithelial cell lines from different tumour grades (CCL-233 and CCL-221) at the basal state or after the UPR induction. RESULTS: Cell lines expressed a different proteome on about 10% of their total proteins identified, especially on UPR, autophagy and apoptosis pathways proteins at basal state. After UPR induction, the proteome of the cells was modified with a greater adaptive response to cellular stress in CCL-221 cells where the UPR was strongly activated at the basal state. CONCLUSIONS AND CLINICAL RELEVANCE: CRC cell lines at different tumour grades expressed different functional programmes at the proteomic level and were characterised by different responses to the UPR induction. This study suggests that baseline cancer cell stress status could have an impact on the efficiency of cancer therapies.

2.
J Proteome Res ; 23(9): 3933-3943, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39140748

RESUMO

Immunoglobulin G (IgG) purification is a critical process for evaluating its role in autoimmune diseases, which are defined by the occurrence of autoantibodies. Affinity chromatography with protein G is widely considered to be the optimal technique for laboratory-scale purification. However, this technique has some limitations, including the exposure of IgG to low pH, which can compromise the quality of the purified IgG. Here, we show that alternative methods for IgG purification are possible while maintaining the quality of IgG. Different techniques for IgG purification from serum were evaluated and compared with protein G-based approaches: Melon Gel, caprylic acid-ammonium sulfate (CAAS) precipitation, anion-exchange chromatography with diethylamino ethyl (DEAE) following ammonium sulfate (AS) precipitation, and AS precipitation alone. The results demonstrated that the purification yield of these techniques surpassed that of protein G. However, differences in the purity of IgG were observed using GeLC-MS/MS. The avidity of purified IgG against selected targets (SARS-CoV-2 and topoisomerase-I) was similar between purified IgG obtained using all techniques and unpurified sera. Our work provides valuable insights for future studies of IgG function by recommending alternative purification methods that offer advantages in terms of yield, time efficiency, cost-effectiveness, and milder pH conditions than protein G.


Assuntos
Sulfato de Amônio , Cromatografia de Afinidade , Imunoglobulina G , Humanos , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/sangue , Imunoglobulina G/química , Cromatografia de Afinidade/métodos , Sulfato de Amônio/química , Cromatografia por Troca Iônica/métodos , Espectrometria de Massas em Tandem/métodos , SARS-CoV-2/imunologia , Caprilatos/química , Precipitação Química , COVID-19/sangue , COVID-19/imunologia , COVID-19/virologia , Afinidade de Anticorpos
3.
J Proteome Res ; 23(8): 3404-3417, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39042361

RESUMO

Collagen from paleontological bones is an important organic material for isotopic measurement, radiocarbon analysis, and paleoproteomic analysis to provide information on diet, dating, taxonomy, and phylogeny. Current paleoproteomic methods are destructive and require from a few milligrams to several tens of milligrams of bone for analysis. In many cultures, bones are raw materials for artifacts that are conserved in museums, which hampers damage to these precious objects during sampling. Here, we describe a low-invasive sampling method that identifies collagen, taxonomy, and post-translational modifications from Holocene and Upper Pleistocene bones dated to 130,000 and 150 BC using dermatological skin tape discs for sampling. The sampled bone micropowders were digested following our highly optimized enhanced filter-aided sample preparation protocol and then analyzed by MALDI FTICR MS and LC-MS/MS for identifying the genus taxa of the bones. We show that this low-invasive sampling does not deteriorate the bones and achieves results similar to those obtained by more destructive sampling. Moreover, this sampling method can be carried out at archeological sites or in museums.


Assuntos
Osso e Ossos , Colágeno , Fósseis , Paleontologia , Proteômica , Osso e Ossos/química , Proteômica/métodos , Paleontologia/métodos , Animais , Colágeno/química , Colágeno/análise , Arqueologia/métodos , Manejo de Espécimes/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Processamento de Proteína Pós-Traducional , Humanos
4.
Cell Death Dis ; 15(6): 391, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830870

RESUMO

Tissue injury causes activation of mesenchymal lineage cells into wound-repairing myofibroblasts (MFs), whose uncontrolled activity ultimately leads to fibrosis. Although this process is triggered by deep metabolic and transcriptional reprogramming, functional links between these two key events are not yet understood. Here, we report that the metabolic sensor post-translational modification O-linked ß-D-N-acetylglucosaminylation (O-GlcNAcylation) is increased and required for myofibroblastic activation. Inhibition of protein O-GlcNAcylation impairs archetypal myofibloblast cellular activities including extracellular matrix gene expression and collagen secretion/deposition as defined in vitro and using ex vivo and in vivo murine liver injury models. Mechanistically, a multi-omics approach combining proteomic, epigenomic, and transcriptomic data mining revealed that O-GlcNAcylation controls the MF transcriptional program by targeting the transcription factors Basonuclin 2 (BNC2) and TEA domain transcription factor 4 (TEAD4) together with the Yes-associated protein 1 (YAP1) co-activator. Indeed, inhibition of protein O-GlcNAcylation impedes their stability leading to decreased functionality of the BNC2/TEAD4/YAP1 complex towards promoting activation of the MF transcriptional regulatory landscape. We found that this involves O-GlcNAcylation of BNC2 at Thr455 and Ser490 and of TEAD4 at Ser69 and Ser99. Altogether, this study unravels protein O-GlcNAcylation as a key determinant of myofibroblastic activation and identifies its inhibition as an avenue to intervene with fibrogenic processes.


Assuntos
Miofibroblastos , Transdução de Sinais , Miofibroblastos/metabolismo , Animais , Camundongos , Humanos , Fibrose/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/metabolismo , Camundongos Endogâmicos C57BL , Fatores de Transcrição de Domínio TEA/metabolismo , Masculino , Processamento de Proteína Pós-Traducional , Acetilglucosamina/metabolismo , Transcrição Gênica , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética
5.
Int J Biol Macromol ; 254(Pt 1): 127619, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898251

RESUMO

Given the clinical need for osteoregenerative materials incorporating controlled biomimetic and biophysical cues, a novel highly-substituted norbornene-modified gelatin was developed enabling thiol-ene crosslinking exploiting thiolated gelatin as cell-interactive crosslinker. Comparing the number of physical crosslinks, the degree of hydrolytic degradation upon modification, the network density and the chemical crosslinking type, the osteogenic effect of visco-elastic and topographical properties was evaluated. This novel network outperformed conventional gelatin-based networks in terms of osteogenesis induction, as evidenced in 2D dental pulp stem cell seeding assays, resulting from the presentation of both a local (substrate elasticity, 25-40 kPa) and a bulk (compressive modulus, 25-45 kPa) osteogenic substrate modulus in combination with adequate fibrillar cell adhesion spacing to optimally transfer traction forces from the fibrillar ECM (as evidenced by mesh size determination with the rubber elasticity theory) and resulting in a 1.7-fold increase in calcium production (compared to the gold standard gelatin methacryloyl (GelMA)).


Assuntos
Biomimética , Gelatina , Gelatina/química , Sinais (Psicologia) , Osteogênese , Hidrogéis/química , Engenharia Tecidual/métodos
6.
Anal Chem ; 95(19): 7422-7432, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37130053

RESUMO

Peptide mass fingerprinting (PMF) using MALDI-TOF mass spectrometry allows the identification of bone species based on their type I collagen sequence. In the archaeological or paleontological field, PMF is known as zooarchaeology mass spectrometry (ZooMS) and is widely implemented to find markers for most species, including the extinct ones. In addition to the identification of bone species, ZooMS enables dating estimation by measuring the deamidation value of specific peptides. Herein, we report several enhancements to the classical ZooMS technique, which reduces to 10-fold the required bone sample amount (down to the milligram scale) and achieves robust deamidation value calculation in a high-throughput manner. These improvements rely on a 96-well plate samples preparation, a careful optimization of collagen extraction and digestion to avoid spurious post-translational modification production, and PMF at high resolution using matrix-assisted laser desorption ionization Fourier transform ion cyclotron resonance (MALDI-FTICR) analysis. This method was applied to the identification of a hundred bones of herbivores from the Middle Paleolithic site of Caours (Somme, France) well dated from the Eemian Last Interglacial climatic optimum. The method gave reliable species identification to bones already identified by their osteomorphology, as well as to more challenging samples consisting of small or burned bone fragments. Deamidation values of bones originating from the same geological layers have a low standard deviation. The method can be applied to archaeological bone remains and offers a robust capacity to identify traditionally unidentifiable bone fragments, thus increasing the number of identified specimens and providing invaluable information in specific contexts.


Assuntos
Peptídeos , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Proteômica/métodos , Peptídeos/química , Colágeno , Colágeno Tipo I
7.
PLoS One ; 18(1): e0279028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662875

RESUMO

Nod-Like Receptor Pyrin domain-containing protein 6 (NLRP6), a member of the Nucleotide-oligomerization domain-Like Receptor (NLR) family of proteins, assembles together with the ASC protein to form an inflammasome upon stimulation by bacterial lipoteichoic acid and double-stranded DNA. Besides its expression in myeloid cells, NLRP6 is also expressed in intestinal epithelial cells where it may contribute to the maintenance of gut homeostasis and negatively controls colorectal tumorigenesis. Here, we report that NLRP6 is very faintly expressed in several colon cancer cell lines, detected only in cytoplasmic small dots were it colocalizes with ASC. Consequently, it is very hardly detected by standard western-blotting techniques by several presently available commercial antibodies which, in contrast, highly cross-react with a protein of 90kDa that we demonstrate to be unrelated to NLRP6. We report here these results to caution the community not to confuse the 90kDa protein with the endogenous human NLRP6.


Assuntos
Inflamassomos , Neoplasias , Humanos , Inflamassomos/metabolismo , Homeostase , Células Epiteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular
8.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499572

RESUMO

Diazotrophic bacteria isolated from the rhizosphere of a wild wheat ancestor, grown from its refuge area in the Fertile Crescent, were found to be efficient Plant Growth-Promoting Rhizobacteria (PGPR), upon interaction with an elite wheat cultivar. In nitrogen-starved plants, they increased the amount of nitrogen in the seed crop (per plant) by about twofold. A bacterial growth medium was developed to investigate the effects of bacterial exudates on root development in the elite cultivar, and to analyze the exo-metabolomes and exo-proteomes. Altered root development was observed, with distinct responses depending on the strain, for instance, with respect to root hair development. A first conclusion from these results is that the ability of wheat to establish effective beneficial interactions with PGPRs does not appear to have undergone systematic deep reprogramming during domestication. Exo-metabolome analysis revealed a complex set of secondary metabolites, including nutrient ion chelators, cyclopeptides that could act as phytohormone mimetics, and quorum sensing molecules having inter-kingdom signaling properties. The exo-proteome-comprised strain-specific enzymes, and structural proteins belonging to outer-membrane vesicles, are likely to sequester metabolites in their lumen. Thus, the methodological processes we have developed to collect and analyze bacterial exudates have revealed that PGPRs constitutively exude a highly complex set of metabolites; this is likely to allow numerous mechanisms to simultaneously contribute to plant growth promotion, and thereby to also broaden the spectra of plant genotypes (species and accessions/cultivars) with which beneficial interactions can occur.


Assuntos
Microbiologia do Solo , Triticum , Triticum/metabolismo , Raízes de Plantas/metabolismo , Rizosfera , Bactérias , Desenvolvimento Vegetal , Plantas , Nitrogênio/metabolismo , Exsudatos de Plantas/metabolismo
9.
ACS Omega ; 7(34): 29702-29713, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36061670

RESUMO

Saccharomyces cerevisiae yeast is a fungus presenting a peripheral organelle called the cell wall. The cell wall protects the yeast cell from stress and provides means for communication with the surrounding environment. It has a complex molecular structure, composed of an internal part of cross-linked polysaccharides and an external part of mannoproteins. These latter are very interesting owing to their functional properties, dependent on their molecular features with massive mannosylations. Therefore, the molecular characterization of mannoproteins is a must relying on the optimal isolation and preparation of the cell wall fraction. Multiple methods are well reported for yeast cell wall isolation. The most applied one consists of yeast cell lysis by mechanical disruption. However, applying this classical approach to S288C yeast cells showed considerable contamination with noncell wall proteins, mainly comprising mitochondrial proteins. Herein, we tried to further purify the yeast cell wall preparation by two means: ultracentrifugation and Triton X-100 addition. While the first strategy showed limited outcomes in mitochondrial protein removal, the second strategy showed optimal results when Triton X-100 was added at 5%, allowing the identification of more mannoproteins and significantly enriching their amounts. This promising method could be reliably implemented on the lab scale for identification of mannoproteins and molecular characterization and industrial processes for "pure" cell wall isolation.

10.
Front Immunol ; 13: 904631, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844491

RESUMO

Autoantibodies (Aabs) are frequent in systemic sclerosis (SSc). Although recognized as potent biomarkers, their pathogenic role is debated. This study explored the effect of purified immunoglobulin G (IgG) from SSc patients on protein and mRNA expression of dermal fibroblasts (FBs) using an innovative multi-omics approach. Dermal FBs were cultured in the presence of sera or purified IgG from patients with diffuse cutaneous SSc (dcSSc), limited cutaneous SSc or healthy controls (HCs). The FB proteome and transcriptome were explored using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and microarray assays, respectively. Proteomic analysis identified 3,310 proteins. SSc sera and purified IgG induced singular protein profile patterns. These FB proteome changes depended on the Aab serotype, with a singular effect observed with purified IgG from anti-topoisomerase-I autoantibody (ATA) positive patients compared to HC or other SSc serotypes. IgG from ATA positive SSc patients induced enrichment in proteins involved in focal adhesion, cadherin binding, cytosolic part, or lytic vacuole. Multi-omics analysis was performed in two ways: first by restricting the analysis of the transcriptomic data to differentially expressed proteins; and secondly, by performing a global statistical analysis integrating proteomics and transcriptomics. Transcriptomic analysis distinguished 764 differentially expressed genes and revealed that IgG from dcSSc can induce extracellular matrix (ECM) remodeling changes in gene expression profiles in FB. Global statistical analysis integrating proteomics and transcriptomics confirmed that IgG from SSc can induce ECM remodeling and activate FB profiles. This effect depended on the serotype of the patient, suggesting that SSc Aab might play a pathogenic role in some SSc subsets.


Assuntos
Imunoglobulina G , Escleroderma Sistêmico , Autoanticorpos , Cromatografia Líquida , Fibroblastos/metabolismo , Humanos , Proteoma/metabolismo , Proteômica , Espectrometria de Massas em Tandem
11.
Sci Rep ; 12(1): 11748, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35817787

RESUMO

We provide an original multi-stage approach identifying a gene signature to assess murine fibroblast polarization. Prototypic polarizations (inflammatory/fibrotic) were induced by seeded mouse embryonic fibroblasts (MEFs) with TNFα or TGFß1, respectively. The transcriptomic and proteomic profiles were obtained by RNA microarray and LC-MS/MS. Gene Ontology and pathways analysis were performed among the differentially expressed genes (DEGs) and proteins (DEPs). Balb/c mice underwent daily intradermal injections of HOCl (or PBS) as an experimental murine model of inflammation-mediated fibrosis in a time-dependent manner. As results, 1456 and 2215 DEGs, and 289 and 233 DEPs were respectively found in MEFs in response to TNFα or TGFß1, respectively. Among the most significant pathways, we combined 26 representative genes to encompass the proinflammatory and profibrotic polarizations of fibroblasts. Based on principal component analysis, this signature deciphered baseline state, proinflammatory polarization, and profibrotic polarization as accurately as RNA microarray and LC-MS/MS did. Then, we assessed the gene signature on dermal fibroblasts isolated from the experimental murine model. We observed a proinflammatory polarization at day 7, and a mixture of a proinflammatory and profibrotic polarizations at day 42 in line with histological findings. Our approach provides a small-size and convenient gene signature to assess murine fibroblast polarization.


Assuntos
Fibroblastos , Fator de Necrose Tumoral alfa , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibrose , Camundongos , Camundongos Endogâmicos BALB C , Proteômica , RNA/metabolismo , Espectrometria de Massas em Tandem , Fator de Necrose Tumoral alfa/metabolismo
12.
Bioact Mater ; 17: 204-220, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35386456

RESUMO

The distribution of photo-crosslinkable moieties onto a protein backbone can affect a biomaterial's crosslinking behavior, and therefore also its mechanical and biological properties. A profound insight in this respect is essential for biomaterials exploited in tissue engineering and regenerative medicine. In the present work, photo-crosslinkable moieties have been introduced on the primary amine groups of: (i) a recombinant collagen peptide (RCPhC1) with a known amino acid (AA) sequence, and (ii) bovine skin collagen (COL BS) with an unknown AA sequence. The degree of substitution (DS) was quantified with two conventional techniques: an ortho-phthalic dialdehyde (OPA) assay and 1H NMR spectroscopy. However, neither of both provides information on the exact type and location of the modified AAs. Therefore, for the first time, proteomic analysis was evaluated herein as a tool to identify functionalized AAs as well as the exact position of photo-crosslinkable moieties along the AA sequence, thereby enabling an in-depth, unprecedented characterization of functionalized photo-crosslinkable biopolymers. Moreover, our strategy enabled to visualize the spatial distribution of the modifications within the overall structure of the protein. Proteomics has proven to provide unprecedented insight in the distribution of photo-crosslinkable moieties along the protein backbone, undoubtedly contributing to superior functional biomaterial design to serve regenerative medicine.

13.
Proteomics ; 22(3): e2100116, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34665929

RESUMO

Fibroblasts (Fb) are key effector cells in systemic sclerosis (SSc). Fb stimulation with transforming growth factor beta 1 (TGF-ß1) is considered as a positive control in studies assessing fibrogenesis. The lack of standardization of TGF-ß1 stimulation might be responsible for discrepancies in experiments performed in different conditions. Using quantitative proteomics analysis, we evaluated the impact of changes in experimental conditions on proteomic profiles of primary Fb. Principal component analysis (PCA) identified several groups of differentially expressed proteins influenced by cell passage, culture medium, and both concentration and duration of exposure to TGF-ß1 stimulation. Bioinformatics analysis revealed that late passages expressed proteins involved in senescence. TGF-ß1 concentration and time of stimulation were correlated with the expression of proteins involved in the fibrogenesis and inflammatory processes. These data underline the need for standardization of culture conditions to allow inter-data comparisons in future in vitro studies, especially when using "omics" approaches.


Assuntos
Proteômica , Escleroderma Sistêmico , Células Cultivadas , Biologia Computacional , Fibroblastos/metabolismo , Humanos , Escleroderma Sistêmico/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
14.
Cancers (Basel) ; 13(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204801

RESUMO

O-GlcNAcylation is a cell glucose sensor. The addition of O-GlcNAc moieties to target protein is catalyzed by the O-Linked N-acetylglucosamine transferase (OGT). OGT is encoded by a single gene that yields differentially spliced OGT isoforms. One of them is targeted to mitochondria (mOGT). Although the impact of O-GlcNAcylation on cancer cells biology is well documented, mOGT's role remains poorly investigated. We performed studies using breast cancer cells with up-regulated mOGT or its catalytic inactive mutant to identify proteins specifically modified by mOGT. Proteomic approaches included isolation of mOGT protein partners and O-GlcNAcylated proteins from mitochondria-enriched fraction followed by their analysis by mass spectrometry. Moreover, we analyzed the impact of mOGT dysregulation on mitochondrial activity and cellular metabolism using a variety of biochemical assays. We found that mitochondrial OGT expression is glucose-dependent. Elevated mOGT expression affected the mitochondrial transmembrane potential and increased intramitochondrial ROS generation. Moreover, mOGT up-regulation caused a decrease in cellular ATP level. We identified many mitochondrial proteins as mOGT substrates. Most of these proteins are localized in the mitochondrial matrix and the inner mitochondrial membrane and participate in mitochondrial respiration, fatty acid metabolism, transport, translation, apoptosis, and mtDNA processes. Our findings suggest that mOGT interacts with and modifies many mitochondrial proteins, and its dysregulation affects cellular bioenergetics and mitochondria function.

15.
Anal Chem ; 93(19): 7180-7187, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33961394

RESUMO

Three-dimensional (3D)-printing techniques such as stereolithography (SLA) are currently gaining momentum for the production of miniaturized analytical devices and molds for soft lithography. However, most commercially available SLA resins inhibit polydimethylsiloxane (PDMS) curing, impeding reliable replication of the 3D-printed structures in this elastomeric material. Here, we report a systematic study, using 16 commercial resins, to identify a fast and straightforward treatment of 3D-printed structures and to support accurate PDMS replication using UV and/or thermal post-curing. In-depth analysis using Raman spectroscopy, nuclear magnetic resonance, and high-resolution mass spectrometry revealed that phosphine oxide-based photo-initiators, leaching out of the 3D-printed structures, are poisoning the Pt-based PDMS catalyst. Yet, upon UV and/or thermal treatments, photo-initiators were both eliminated and recombined into high molecular weight species that were sequestered in the molds.


Assuntos
Dimetilpolisiloxanos , Impressão Tridimensional
16.
Commun Biol ; 4(1): 296, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674787

RESUMO

The order Chlamydiales includes obligate intracellular pathogens capable of infecting mammals, fishes and amoeba. Unlike other intracellular bacteria for which intracellular adaptation led to the loss of glycogen metabolism pathway, all chlamydial families maintained the nucleotide-sugar dependent glycogen metabolism pathway i.e. the GlgC-pathway with the notable exception of both Criblamydiaceae and Waddliaceae families. Through detailed genome analysis and biochemical investigations, we have shown that genome rearrangement events have resulted in a defective GlgC-pathway and more importantly we have evidenced a distinct trehalose-dependent GlgE-pathway in both Criblamydiaceae and Waddliaceae families. Altogether, this study strongly indicates that the glycogen metabolism is retained in all Chlamydiales without exception, highlighting the pivotal function of storage polysaccharides, which has been underestimated to date. We propose that glycogen degradation is a mandatory process for fueling essential metabolic pathways that ensure the survival and virulence of extracellular forms i.e. elementary bodies of Chlamydiales.


Assuntos
Chlamydiales/metabolismo , Glicogênio/metabolismo , Glicogenólise , Polissacarídeos Bacterianos/metabolismo , Chlamydiales/genética , Chlamydiales/patogenicidade , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Cinética , Filogenia , Virulência
17.
Anal Chem ; 92(24): 15736-15744, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32897057

RESUMO

Polybutadiene (PB) and polyisoprene (PI), the two most common polydienes (PD), are involved in a large number of materials and used in a wide variety of applications. The characterization of these polymers by mass spectrometry (MS) continues to be very challenging due to their high insolubility and the difficulty to ionize them. In this work, a cross-metathesis reaction was used to generate end-functionalized acetoxy ionizable oligomers for the structural deciphering of different commercial PB and PI samples. A cross-metathesis reaction was carried out between polymers and the Z-1,4-diacetoxy-2-butene as a chain transfer agent in dichloromethane using a Hoveyda-Grubbs second-generation catalyst. Well-defined acetoxy telechelic structures were obtained and analyzed by Fourier transform ion cyclotron resonance (FTICR) high-resolution MS. However, after depolymerization, low molar mass polyolefins contained some units with different configurations, suggesting an olefin isomerization reaction due to the decomposition of the catalyst. The addition of an electron-deficient reagent such as 2,6-dichloro-1,4-benzoquinone suppressed this isomerization in the case of both Z- and E-PB and PI. Ion mobility spectrometry-mass spectrometry (IMS-MS) and energy-resolved tandem mass spectrometry (ERMS) analyses confirmed a successful isomerization suppression. For comparing the results obtained by depolymerization with classical methods for polymer analysis, pyrolysis-comprehensive two-dimensional gas chromatography/mass spectrometry (Py-GC × GC-MS), atmospheric solid analysis probe (ASAP), and direct inlet probe-atmospheric pressure chemical ionization (DIP-APCI) analyses were performed on the same polymers. This strategy can be applied on a variety of synthetic and natural not yet characterized polymers.

18.
Biomacromolecules ; 21(10): 3997-4007, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32841006

RESUMO

Various biopolymers, including gelatin, have already been applied to serve a plethora of tissue engineering purposes. However, substantial concerns have arisen related to the safety and the reproducibility of these materials due to their animal origin and the risk associated with pathogen transmission as well as batch-to-batch variations. Therefore, researchers have been focusing their attention toward recombinant materials that can be produced in a laboratory with full reproducibility and can be designed according to specific needs (e.g., by introducing additional RGD sequences). In the present study, a recombinant protein based on collagen type I (RCPhC1) was functionalized with photo-cross-linkable methacrylamide (RCPhC1-MA), norbornene (RCPhC1-NB), or thiol (RCPhC1-SH) functionalities to enable high-resolution 3D printing via two-photon polymerization (2PP). The results indicated a clear difference in 2PP processing capabilities between the chain-growth-polymerized RCPhC1-MA and the step-growth-polymerized RCPhC1-NB/SH. More specifically, reduced swelling-related deformations resulting in a superior CAD-CAM mimicry were obtained for the RCPhC1-NB/SH hydrogels. In addition, RCPhC1-NB/SH allowed the processing of the material in the presence of adipose tissue-derived stem cells that survived the encapsulation process and also were able to proliferate when embedded in the printed structures. As a consequence, it is the first time that successful HD bioprinting with cell encapsulation is reported for recombinant hydrogel bioinks. Therefore, these results can be a stepping stone toward various tissue engineering applications.


Assuntos
Bioimpressão , Animais , Colágeno , Gelatina , Hidrogéis , Impressão Tridimensional , Reprodutibilidade dos Testes , Engenharia Tecidual , Alicerces Teciduais
19.
Plants (Basel) ; 8(9)2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487879

RESUMO

Starch granule morphology is highly variable depending on the botanical origin. Moreover, all investigated plant species display intra-tissular variability of granule size. In potato tubers, the size distribution of starch granules follows a unimodal pattern with diameters ranging from 5 to 100 µm. Several evidences indicate that granule morphology in plants is related to the complex starch metabolic pathway. However, the intra-sample variability of starch-binding metabolic proteins remains unknown. Here, we report on the molecular characterization of size-fractionated potato starch granules with average diameters of 14.2 ± 3.7 µm, 24.5 ± 6.5 µm, 47.7 ± 12.8 µm, and 61.8 ± 17.4 µm. In addition to changes in the phosphate contents as well as small differences in the amylopectin structure, we found that the starch-binding protein stoichiometry varies significantly according to granule size. Label-free quantitative proteomics of each granule fraction revealed that individual proteins can be grouped according to four distinct abundance patterns. This study corroborates that the starch proteome may influence starch granule growth and architecture and opens up new perspectives in understanding the dynamics of starch biosynthesis.

20.
J Mater Chem B ; 7(19): 3100-3108, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31441462

RESUMO

Gelatin is frequently used in various biomedical applications. However, gelatin is generally extracted from an animal source, which can result in issues with reproducibility as well as pathogen transmittance. Therefore, we have investigated the potential of a recombinant peptide based on collagen I (RCPhC1) for tissue engineering applications and more specifically for adipose tissue regeneration. In the current paper, RCPhC1 was functionalized with photo-crosslinkable methacrylamide moieties to enable subsequent UV-induced crosslinking in the presence of a photo-initiator. The resulting biomaterial (RCPhC1-MA) was characterized by evaluating the crosslinking behaviour, the mechanical properties, the gel fraction, the swelling properties and the biocompatibility. The obtained results were compared with the data obtained for methacrylamide-modified gelatin (Gel-MA). The results indicated that the properties of RCPhC1-MA networks are comparable to those of animal-derived Gel-MA. RCPhC1-MA is thus an attractive synthetic alternative for animal-derived Gel-MA and is envisioned to be applicable for a wide range of tissue engineering purposes.


Assuntos
Materiais Biocompatíveis/química , Colágeno/química , Engenharia Tecidual/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA