Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 157: 105601, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33115672

RESUMO

PURPOSE: We evaluated the analgesic, anti-inflammatory and toxicological effects of indomethacin incorporated into mesoporous silica nanoparticles (IND+NP). METHODS: Nociception was evaluated by the formalin assay. The anti-inflammatory potential was assessed by cell migration and paw edema assays, modulation of nitric oxide and cytokines (IL-6, IL-10 and TNF-α) by macrophages production. Toxicity was evaluated in peritoneal macrophages and by the locomotion assay and assessment of gastric injuries, presence of occult blood and hepatic and renal markers. RESULTS: IND+NP reduced nociception during phases 1 by 53% and 2 by 79% of the formalin assay and the influx of peritoneal cells by 94%, indicating an analgesic and anti-inflammatory effect more efficiently than indomethacin alone. Indomethacin, but not IND+NP, caused macroscopic gastric injuries, the presence of fecal occult blood, and an increase of ALT levels. In the paw edema assay, IND+NP reduced edema by 21%. IND+NP has no effect on the LPS-induced production of nitric oxide, IL-6, IL-10 and TNF-α on no cytotoxic concentrations. CONCLUSIONS: The incorporation of indomethacin into mesoporous silica nanoparticles effectively increased the activity of the drug observed in the formalin and cell migration assays and prevented the gastric and hepatic damage associated with its use.


Assuntos
Indometacina , Nanopartículas , Anti-Inflamatórios/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Humanos , Dióxido de Silício
2.
Pharm Res ; 37(9): 172, 2020 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-32830303

RESUMO

Melanoma is the deadliest type of skin cancer. Treatments that directly address tumor survival are required. Indomethacin (IND) is a well-known drug used worldwide. Although widely used as a therapeutic agent, IND has undesirable gastrointestinal effects. PURPOSE: To investigate the antitumor efficacy of IND incorporated into mesoporous silica nanoparticles (MSNPs+IND), as well as its toxic potential in a syngeneic murine B16 melanoma model. METHODS: Antitumor activity was evaluated by measuring tumor size and weight and by histopathological analysis. Possible molecular signaling pathways involved in the antitumor activity were analyzed by Western blot in liver tissue and by immunohistochemistry in tumor tissue. The potential toxicity was evaluated by determining body and organ weights and by biochemical and genotoxic analysis. RESULTS: MSNPs+IND treatments inhibited tumor growth by up to 70.09% and decreased the frequency of mitosis in tumor tissues, which was up to 37.95% lower compared to the IND groups. In hepatic tissue, COX-2 levels decreased significantly after treatment with MSNPs+IND and IND. Additionally, MSNPs+IND and IND increased the levels of cleaved caspase-3 (156.25% and 137.50%, respectively), inducing tumor cell apoptosis. Genotoxicity was limited to the group treated with the higher concentration of IND, while MSNPs prevented IND-induced genotoxicity. CONCLUSIONS: MSNPs may be promising for future applications in cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Indometacina/administração & dosagem , Melanoma/tratamento farmacológico , Nanopartículas/química , Animais , Antineoplásicos/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Indometacina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitose/efeitos dos fármacos , Porosidade , Dióxido de Silício/química
3.
Nanotechnology ; 27(38): 385103, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27533108

RESUMO

The unique properties of macroporous, mesoporous, and microporous systems, including their ability to accommodate molecules of different sizes inside their pores and to act as drug delivery systems, have been the object of extensive studies. In this work, mesoporous silica with hexagonal structure was obtained by template synthesis via the sol-gel process. The resulting material was used as support to accommodate the anti-inflammatory agent indomethacin. The alkaline route was used to prepare the mesoporous silica; cetyltrimethylammonium bromide was employed as porogenic agent. The silica particles were functionalized with 3-aminopropyltriethoxysilane alkoxide (APTES) by the sol-gel post-synthesis method. Indomethacin was incorporated into the silica functionalized with APTES and into non-functionalized silica. The resulting systems were characterized by x-ray diffraction (XRD), specific area, infrared spectroscopy, and thermal analyses (TGA). XRD attested to formation of mesoporous silica with hexagonal structure. This structure remained after silica functionalization with APTES and incorporation of indomethacin. Typical infrared spectroscopy vibrations and organic material decomposition during TGA confirmed silica functionalization and drug incorporation. The specific surface area and pore volume of the functionalized material incorporated with indomethacin decreased as compared with the specific surface area and pore volume of the non-functionalized silica containing no drug, suggesting both the functionalizing agent and the drug were present in the silica. Cytotoxicity tests conducted on normal fibroblasts (GM0479A) cells attested that the silica matrix containing indomethacin was less toxic than the free drug.


Assuntos
Anti-Inflamatórios/química , Sistemas de Liberação de Medicamentos , Porosidade , Dióxido de Silício , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA