Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 12(17)2019 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-31450554

RESUMO

The combination of calcium phosphates with bioactive glasses (BG) has received an increased interest in the field of bone tissue engineering. In the present work, biphasic calcium phosphates (BCP) obtained by hydrothermal transformation of cuttlefish bone (CB) were coated with a Sr-, Mg- and Zn-doped sol-gel derived BG. The scaffolds were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. The initial CB structure was maintained after hydrothermal transformation (HT) and the scaffold functionalization did not jeopardize the internal structure. The results of the in-vitro bioactivity after immersing the BG coated scaffolds in simulated body fluid (SBF) for 15 days showed the formation of apatite on the surface of the scaffolds. Overall, the functionalized CB derived BCP scaffolds revealed promising properties, but further assessment of the in-vitro biological properties is needed before being considered for their use in bone tissue engineering applications.

2.
Materials (Basel) ; 12(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577440

RESUMO

The present work aims at evaluating the potential gains derived from partially replacing calcium in resorbable ß-tricalcium phosphate (ß-TCP) by two different molar percentages of strontium (5, 10) and zinc (1, 2), concomitantly with a fixed molar percentage (0.5) of manganese. Synthetic granular composite bone filling grafts consisting of doped ß-TCP and an alkali-free bioactive glass were prepared and implanted in ~4 mm diameter bone defects drilled in the calvaria of Wistar rats used as animal models. The animals were sacrificed after 9 weeks of implantation and the calvaria was excised. Non-manipulated bone was used as positive control, while empty defects were used as a negative control group. The von Kossa staining revealed an enhanced new bone formation with increasing doping levels, supporting the therapeutic effects exerted by the doping elements. The percentage of newly formed bone was similar when the defects were filled with autologous bone, BG (previous results) or 3TCP2/7BG, which indicates that the latter two are excellent candidates for replacement of autologous bone as bone regeneration material. This finding confirms that doping with suitable doses of therapeutic ions is a good strategy towards transposing the bone graft materials to biomedical applications in humans.

3.
Materials (Basel) ; 11(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545136

RESUMO

The discovery of bioactive glasses (BGs) in the late 1960s by Larry Hench et al. was driven by the need for implant materials with an ability to bond to living tissues, which were intended to replace inert metal and plastic implants that were not well tolerated by the body. Among a number of tested compositions, the one that later became designated by the well-known trademark of 45S5 Bioglass® excelled in its ability to bond to bone and soft tissues. Bonding to living tissues was mediated through the formation of an interfacial bone-like hydroxyapatite layer when the bioglass was put in contact with biological fluids in vivo. This feature represented a remarkable milestone, and has inspired many other investigations aiming at further exploring the in vitro and in vivo performances of this and other related BG compositions. This paradigmatic example of a target-oriented research is certainly one of the most valuable contributions that one can learn from Larry Hench. Such a goal-oriented approach needs to be continuously stimulated, aiming at finding out better performing materials to overcome the limitations of the existing ones, including the 45S5 Bioglass®. Its well-known that its main limitations include: (i) the high pH environment that is created by its high sodium content could turn it cytotoxic; (ii) and the poor sintering ability makes the fabrication of porous three-dimensional (3D) scaffolds difficult. All of these relevant features strongly depend on a number of interrelated factors that need to be well compromised. The selected chemical composition strongly determines the glass structure, the biocompatibility, the degradation rate, and the ease of processing (scaffolds fabrication and sintering). This manuscript presents a first general appraisal of the scientific output in the interrelated areas of bioactive glasses and glass-ceramics, scaffolds, implant coatings, and tissue engineering. Then, it gives an overview of the critical issues that need to be considered when developing bioactive glasses for healthcare applications. The aim is to provide knowledge-based tools towards guiding young researchers in the design of new bioactive glass compositions, taking into account the desired functional properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA