RESUMO
The conformational state of DNA fine-tunes the transcriptional rate and abundance of RNA. Here, we report that G-quadruplex DNA (G4-DNA) accumulates in neurons, in an experience-dependent manner, and that this is required for the transient silencing and activation of genes that are critically involved in learning and memory in male C57/BL6 mice. In addition, site-specific resolution of G4-DNA by dCas9-mediated deposition of the helicase DHX36 impairs fear extinction memory. Dynamic DNA structure states therefore represent a key molecular mechanism underlying memory consolidation.One-Sentence Summary: G4-DNA is a molecular switch that enables the temporal regulation of the gene expression underlying the formation of fear extinction memory.
Assuntos
Quadruplex G , Masculino , Animais , Camundongos , Extinção Psicológica , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Medo , DNA/metabolismoRESUMO
Non-coding RNAs (ncRNAs) are highly plastic RNA molecules that can sequester cellular proteins and other RNAs, serve as transporters of cellular cargo and provide spatiotemporal feedback to the genome. Mounting evidence indicates that ncRNAs are central to biology, and are critical for neuronal development, metabolism and intra- and intercellular communication in the brain. Their plasticity arises from state-dependent dynamic structure states that can be influenced by cell type and subcellular environment, which can subsequently enable the same ncRNA with discrete functions in different contexts. Here, we highlight different classes of brain-enriched ncRNAs, including microRNA, long non-coding RNA and other enigmatic ncRNAs, that are functionally important for both learning and memory and adaptive immunity, and describe how they may promote cross-talk between these two evolutionarily ancient biological systems.
Assuntos
Imunidade Adaptativa , Encéfalo , Aprendizagem , Memória , RNA não Traduzido , Humanos , Animais , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Encéfalo/metabolismo , Encéfalo/imunologia , Imunidade Adaptativa/fisiologia , Memória/fisiologia , Aprendizagem/fisiologia , Sistema Imunitário/metabolismo , NeuroquímicaRESUMO
Long noncoding RNAs (lncRNAs) represent a multidimensional class of regulatory molecules that are involved in many aspects of brain function. Emerging evidence indicates that lncRNAs are localized to the synapse; however, a direct role for their activity in this subcellular compartment in memory formation has yet to be demonstrated. Using lncRNA capture-seq, we identified a specific set of lncRNAs that accumulate in the synaptic compartment within the infralimbic prefrontal cortex of adult male C57/Bl6 mice. Among these was a splice variant related to the stress-associated lncRNA, Gas5. RNA immunoprecipitation followed by mass spectrometry and single-molecule imaging revealed that this Gas5 isoform, in association with the RNA binding proteins G3BP2 and CAPRIN1, regulates the activity-dependent trafficking and clustering of RNA granules. In addition, we found that cell-type-specific, activity-dependent, and synapse-specific knockdown of the Gas5 variant led to impaired fear extinction memory. These findings identify a new mechanism of fear extinction that involves the dynamic interaction between local lncRNA activity and RNA condensates in the synaptic compartment.
Assuntos
Medo , RNA Longo não Codificante , Camundongos , Masculino , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Extinção Psicológica , Córtex Pré-Frontal/metabolismo , Sinapses/metabolismoRESUMO
The RNA modification N6-methyladenosine (m6A) regulates the interaction between RNA and various RNA binding proteins within the nucleus and other subcellular compartments and has recently been shown to be involved in experience-dependent plasticity, learning, and memory. Using m6A RNA-sequencing, we have discovered a distinct population of learning-related m6A- modified RNAs at the synapse, which includes the long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (Malat1). RNA immunoprecipitation and mass spectrometry revealed 12 new synapse-specific learning-induced m6A readers in the mPFC of male C57/BL6 mice, with m6A-modified Malat1 binding to a subset of these, including CYFIP2 and DPYSL2. In addition, a cell type- and synapse-specific, and state-dependent, reduction of m6A on Malat1 impairs fear-extinction memory; an effect that likely occurs through a disruption in the interaction between Malat1 and DPYSL2 and an associated decrease in dendritic spine formation. These findings highlight the critical role of m6A in regulating the functional state of RNA during the consolidation of fear-extinction memory, and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.SIGNIFICANCE STATEMENT We have discovered that learning-induced m6A-modified RNA (including the long noncoding RNA, Malat1) accumulates in the synaptic compartment. We have identified several new m6A readers that are associated with fear extinction learning and demonstrate a causal relationship between m6A-modified Malat1 and the formation of fear-extinction memory. These findings highlight the role of m6A in regulating the functional state of an RNA during memory formation and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.
Assuntos
Medo , RNA Longo não Codificante , Animais , Masculino , Camundongos , Extinção Psicológica , Medo/fisiologia , Aprendizagem/fisiologia , RNA Longo não Codificante/metabolismo , Sinapses/metabolismoRESUMO
A self-cleaving ribozyme that maps to an intron of the cytoplasmic polyadenylation element binding protein 3 (CPEB3) gene is thought to play a role in human episodic memory, but the underlying mechanisms mediating this effect are not known. We tested the activity of the murine sequence and found that the ribozyme's self-scission half-life matches the time it takes an RNA polymerase to reach the immediate downstream exon, suggesting that the ribozyme-dependent intron cleavage is tuned to co-transcriptional splicing of the CPEB3 mRNA. Our studies also reveal that the murine ribozyme modulates maturation of its harboring mRNA in both cultured cortical neurons and the hippocampus: inhibition of the ribozyme using an antisense oligonucleotide leads to increased CPEB3 protein expression, which enhances polyadenylation and translation of localized plasticity-related target mRNAs, and subsequently strengthens hippocampal-dependent long-term memory. These findings reveal a previously unknown role for self-cleaving ribozyme activity in regulating experience-induced co-transcriptional and local translational processes required for learning and memory.
RESUMO
Here, we used RNA capture-seq to identify a large population of lncRNAs that are expressed in the infralimbic prefrontal cortex of adult male mice in response to fear-related learning. Combining these data with cell-type-specific ATAC-seq on neurons that had been selectively activated by fear extinction learning, we find inducible 434 lncRNAs that are derived from enhancer regions in the vicinity of protein-coding genes. In particular, we discover an experience-induced lncRNA we call ADRAM (activity-dependent lncRNA associated with memory) that acts as both a scaffold and a combinatorial guide to recruit the brain-enriched chaperone protein 14-3-3 to the promoter of the memory-associated immediate-early gene Nr4a2 and is required fear extinction memory. This study expands the lexicon of experience-dependent lncRNA activity in the brain and highlights enhancer-derived RNAs (eRNAs) as key players in the epigenomic regulation of gene expression associated with the formation of fear extinction memory.
Assuntos
Medo , RNA Longo não Codificante , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Animais , Extinção Psicológica/fisiologia , Medo/fisiologia , Masculino , Camundongos , Córtex Pré-Frontal/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
The majority of transcriptionally active RNA derived from the mammalian genome does not code for protein. Long noncoding RNA (lncRNA) is the most abundant form of noncoding RNA found in the brain and is involved in many aspects of cellular metabolism. Beyond their fundamental role in the nucleus as decoys for RNA-binding proteins associated with alternative splicing or as guides for the epigenetic regulation of protein-coding gene expression, recent findings indicate that activity-induced lncRNAs also regulate neural plasticity. In this review, we discuss how lncRNAs may exert molecular control over brain function beyond their known roles in the nucleus. We propose that subcellular localization is a critical feature of experience-dependent lncRNA activity in the brain, and that lncRNA-mediated control over RNA metabolism at the synapse serves to regulate local mRNA stability and translation, thereby influencing neuronal function, learning and memory.
Assuntos
Encéfalo/metabolismo , Epigênese Genética , Neurônios/metabolismo , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Processamento Alternativo , Animais , Encéfalo/citologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Humanos , Aprendizagem/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/genética , Neurônios/citologia , Especificidade de Órgãos , Estabilidade de RNA , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sinapses/metabolismoRESUMO
Higher-order organisms possess information processing capabilities that are only made possible by their biological complexity. Emerging evidence indicates a critical role for regulatory RNAs in coordinating many aspects of cellular function that are directly involved in experience-dependent neural plasticity. Here, we focus on a structurally distinct class of RNAs known as circular RNAs. These closed loop, single-stranded RNA molecules are highly stable, enriched in the brain, and functionally active in both healthy and disease conditions. Current evidence implicating this ancient class of RNA as a contributor toward higher-order functions such as cognition and memory is discussed.
Assuntos
RNA Circular , RNA , Encéfalo , HumanosRESUMO
Inhalants containing the volatile solvent toluene are misused to induce euphoria or intoxication. Inhalant abuse is most common during adolescence and can result in cognitive impairments during an important maturational period. Despite evidence suggesting that epigenetic modifications may underpin the cognitive effects of inhalants, no studies to date have thoroughly investigated toluene-induced regulation of the transcriptome or discrete epigenetic modifications within the brain. To address this, we investigated effects of adolescent chronic intermittent toluene (CIT) inhalation on gene expression and DNA methylation profiles within the rat medial prefrontal cortex (mPFC), which undergoes maturation throughout adolescence and has been implicated in toluene-induced cognitive deficits. Employing both RNA-seq and genome-wide Methyl CpG Binding Domain (MBD) Ultra-seq analysis, we demonstrate that adolescent CIT inhalation (10 000 ppm for 1 h/day, 3 days/week for 4 weeks) induces both transient and persistent changes to the transcriptome and DNA methylome within the rat mPFC for at least 2 weeks following toluene exposure. We demonstrate for the first time that adolescent CIT exposure results in dynamic regulation of the mPFC transcriptome likely relating to acute inflammatory responses and persistent deficits in synaptic plasticity. These adaptations may contribute to the cognitive deficits associated with chronic toluene exposure and provide novel molecular targets for preventing long-term neurophysiological abnormalities following chronic toluene inhalation.
Assuntos
Metilação de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Córtex Pré-Frontal/efeitos dos fármacos , Tolueno/toxicidade , Transcriptoma/efeitos dos fármacos , Administração por Inalação , Animais , Expressão Gênica , Abuso de Inalantes , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos WistarRESUMO
A major challenge in neurobiology in the 21st century is to understand how the brain adapts with experience. Activity-dependent gene expression is integral to the synaptic plasticity underlying learning and memory; however, this process cannot be explained by a simple linear trajectory of transcription to translation within a specific neuronal population. Many other regulatory mechanisms can influence RNA metabolism and the capacity of neurons to adapt. In particular, the RNA modification N6-methyladenosine (m6A) has recently been shown to regulate RNA processing through alternative splicing, RNA stability, and translation. Here, we discuss the emerging idea that m6A could also coordinate the transport, localization, and local translation of key mRNAs in learning and memory and expand on the notion of dynamic functional RNA states in the brain.
Assuntos
Encéfalo , RNA , Adenosina/análogos & derivados , Humanos , Plasticidade Neuronal , NeurôniosRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
DNA forms conformational states beyond the right-handed double helix; however, the functional relevance of these noncanonical structures in the brain remains unknown. Here we show that, in the prefrontal cortex of mice, the formation of one such structure, Z-DNA, is involved in the regulation of extinction memory. Z-DNA is formed during fear learning and reduced during extinction learning, which is mediated, in part, by a direct interaction between Z-DNA and the RNA-editing enzyme Adar1. Adar1 binds to Z-DNA during fear extinction learning, which leads to a reduction in Z-DNA at sites where Adar1 is recruited. Knockdown of Adar1 leads to an inability to modify a previously acquired fear memory and blocks activity-dependent changes in DNA structure and RNA state-effects that are fully rescued by the introduction of full-length Adar1. These findings suggest a new mechanism of learning-induced gene regulation that is dependent on proteins that recognize alternate DNA structure states, which are required for memory flexibility.
Assuntos
Adenosina Desaminase/metabolismo , Adenosina Desaminase/fisiologia , DNA Forma Z/fisiologia , Extinção Psicológica/fisiologia , Edição de RNA/fisiologia , Animais , DNA Forma Z/metabolismo , Medo , Aprendizagem/fisiologia , Camundongos , Córtex Pré-Frontal/metabolismo , RNA Interferente Pequeno/farmacologiaRESUMO
The Piwi pathway is a conserved gene regulatory mechanism comprised of Piwi-like proteins and Piwi-interacting RNAs, which modulates gene expression via RNA interference and through interaction with epigenetic mechanisms. The mammalian Piwi pathway has been defined by its role in transposon control during spermatogenesis; however, despite an increasing number of studies demonstrating its expression in the nervous system, relatively little is known about its function in neurons or potential contribution to behavioural regulation. We have discovered that all three Piwi-like genes are expressed in the adult mouse brain, and that viral-mediated knockdown of the Piwi-like genes Piwil1 and Piwil2 in the dorsal hippocampus leads to enhanced contextual fear memory without affecting generalised anxiety. These results implicate the Piwi pathway in behavioural regulation in the adult mammalian brain, likely through modulation of plasticity-related gene expression.
Assuntos
Proteínas Argonautas/metabolismo , Comportamento Animal/fisiologia , Medo/fisiologia , Hipocampo/metabolismo , Memória/fisiologia , RNA Interferente Pequeno/metabolismo , Animais , Ansiedade/genética , Proteínas Argonautas/genética , Técnicas de Cultura de Células , Condicionamento Operante/fisiologia , Epigênese Genética/fisiologia , Expressão Gênica/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Agitação Psicomotora/genéticaRESUMO
DNA modification is known to regulate experience-dependent gene expression. However, beyond cytosine methylation and its oxidated derivatives, very little is known about the functional importance of chemical modifications on other nucleobases in the brain. Here we report that in adult mice trained in fear extinction, the DNA modification N6-methyl-2'-deoxyadenosine (m6dA) accumulates along promoters and coding sequences in activated prefrontal cortical neurons. The deposition of m6dA is associated with increased genome-wide occupancy of the mammalian m6dA methyltransferase, N6amt1, and this correlates with extinction-induced gene expression. The accumulation of m6dA is associated with transcriptional activation at the brain-derived neurotrophic factor (Bdnf) P4 promoter, which is required for Bdnf exon IV messenger RNA expression and for the extinction of conditioned fear. These results expand the scope of DNA modifications in the adult brain and highlight changes in m6dA as an epigenetic mechanism associated with activity-induced gene expression and the formation of fear extinction memory.
Assuntos
Metilação de DNA , Desoxiadenosinas/metabolismo , Extinção Psicológica/fisiologia , Medo , Regulação da Expressão Gênica , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Epigênese Genética , Masculino , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismoRESUMO
An understanding of how memory is acquired and how it can be modified in fear-related anxiety disorders, with the enhancement of failing memories on one side and a reduction or elimination of traumatic memories on the other, is a key unmet challenge in the fields of neuroscience and neuropsychiatry. The latter process depends on an important form of learning called fear extinction, where a previously acquired fear-related memory is decoupled from its ability to control behaviour through repeated non-reinforced exposure to the original fear-inducing cue. Although simple in description, fear extinction relies on a complex pattern of brain region and cell-type specific processes, some of which are unique to this form of learning and, for better or worse, contribute to the inherent instability of fear extinction memory. Here, we explore an emerging layer of biology that may compliment and enrich the synapse-centric perspective of fear extinction. As opposed to the more classically defined role of protein synthesis in the formation of fear extinction memory, a neuroepigenetic view of the experience-dependent gene expression involves an appreciation of dynamic changes in the state of the entire cell: from a transient change in plasticity at the level of the synapse, to potentially more persistent long-term effects within the nucleus. A deeper understanding of neuroepigenetic mechanisms and how they influence the formation and maintenance of fear extinction memory has the potential to enable the development of more effective treatment approaches for fear-related neuropsychiatric conditions.
Assuntos
Encéfalo/fisiologia , Epigênese Genética/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Medo/psicologia , Animais , Humanos , Aprendizagem/fisiologia , Memória/fisiologia , Transtornos Mentais/genética , Transtornos Mentais/psicologiaRESUMO
While increasing evidence posits poor decision-making as a central feature of mental disorders, very few studies investigated the effects of early-life stress (ELS) on specific components of reward-related choice behaviors. Risk-taking (RT) involves the exposure to some danger, or negative consequences, in order to achieve a goal-directed behavior. Such behaviors are likely to be preceded by risk-assessment (RA), which is a dynamic cognitive process involving the acquisition of information in potentially dangerous situations. Here, we investigated the effects of being raised in impoverished housing conditions during early life (P2-P9) on RT, RA and dopaminergic and corticotrophinergic gene expression of adolescent male and female mice. Phenotypes were assessed by two protocols: the elevated plus-maze (EPM) and the predator-odor risk-taking (PORT). We found decreased RA in mice exposed to impoverished housing in the absence of a reward (EPM), with a more pronounced effect among females. Moreover, when exposed to a predatory olfactory cue, increased RT was observed in these females in a reward-related task (PORT), as well as decreased HPA axis responsivity. This sex-specific behavioral effect was associated with increased Crfr1 mRNA expression in the medial prefrontal cortex (mPFC) and higher levels of the histone mark H3R2me2s, a histone modification known to be involved in transcriptional activation, within the promoter of the Crfr1 gene. These findings revealed that ELS exposure can impair the acquisition of environmental information in dangerous situations and increase RT in reward-related scenarios among females, with an important role regarding epigenetic regulation of the Crfr1 gene.
Assuntos
Comportamento de Escolha/fisiologia , Tomada de Decisões/fisiologia , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Fatores Etários , Animais , Encéfalo , Dopamina/metabolismo , Epigênese Genética/genética , Feminino , Regulação da Expressão Gênica/genética , Histonas/genética , Abrigo para Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Hipófise-Suprarrenal/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Hormônio Liberador da Corticotropina/fisiologia , Recompensa , Medição de Risco , Assunção de Riscos , Fatores Sexuais , Estresse Psicológico/metabolismoRESUMO
We have identified a member of the growth arrest and DNA damage (Gadd45) protein family, Gadd45γ, which is known to be critically involved in DNA repair, as a key player in the regulation of immediate early gene (IEG) expression underlying the consolidation of associative fear memory in adult male C57BL/6 mice. Gadd45γ temporally influences learning-induced IEG expression in the prelimbic prefrontal cortex (PLPFC) through its interaction with DNA double-strand break (DSB)-mediated changes in DNA methylation. Our findings suggest a two-hit model of experience-dependent IEG activity and learning that comprises (1) a first wave of IEG expression governed by DSBs and followed by a rapid increase in DNA methylation, and (2) a second wave of IEG expression associated with the recruitment of Gadd45γ and active DNA demethylation at the same site, which is necessary for memory consolidation.SIGNIFICANCE STATEMENT How does the pattern of immediate early gene transcription in the brain relate to the storage and accession of information, and what controls these patterns? This paper explores how Gadd45γ, a gene that is known to be involved with DNA modification and repair, regulates the temporal coding of IEGs underlying associative learning and memory. We reveal that, during fear learning, Gadd45γ serves to act as a coordinator of IEG expression and subsequent memory consolidation by directing temporally specific changes in active DNA demethylation at the promoter of plasticity-related IEGs.
Assuntos
Reparo do DNA/genética , Medo/fisiologia , Genes Precoces/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Sistema Límbico/fisiologia , Consolidação da Memória/fisiologia , Memória/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Sinais (Psicologia) , Quebras de DNA de Cadeia Dupla , Metilação de DNA , Epigênese Genética , Masculino , Rememoração Mental/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Desempenho Psicomotor/fisiologiaRESUMO
Repeated cocaine administration induces many long-term structural and molecular changes in the dorsal medial prefrontal cortex (dmPFC) and are known to underlie aspects of cocaine-seeking behavior. DNA methylation is a key long-lasting epigenetic determinant of gene expression and is implicated in neuroplasticity, however, the extent to which this epigenetic modification is involved in the neuroplasticity associated with drug addiction has received limited attention. Here, we examine the relation between DNA methylation and gene expression within the dorsal medial prefrontal cortex (dmPFC) following limited cocaine self-administration (1â¯h/day), prolonged cocaine self-administration (6â¯h/day), and saline self-administration (1â¯h/day). Rats were fitted with intravenous catheters and allowed to lever press for saline or cocaine (0.25 mg/kg/0.1â¯mL infusion) in the different access conditions for 20 days. Prolonged-access rats exhibited escalation in cocaine intake over the course of training, while limited-access rats did not escalate cocaine intake. Additionally, limited-access and prolonged-access rats exhibited unique Homer2 epigenetic profiles and mRNA expression. In prolonged-access rats, Homer2 mRNA levels in the dmPFC were increased, which was accompanied by decreased DNA methylation and p300 binding within the Homer2 promoter. Limited-access animals exhibited decreased DNA methylation, decreased DNA hydroxymethylation, and increased p300 binding within the Homer2 promoter. These data indicate that distinct epigenetic profiles are induced by limited-versus prolonged-access self-administration conditions that contribute to transcriptional profiles and lend support to the notion that covalent modification of DNA is implicated in addiction-like changes in cocaine-seeking behavior.
Assuntos
Transtornos Relacionados ao Uso de Cocaína/metabolismo , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Proteínas de Arcabouço Homer/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Animais , Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Comportamento de Procura de Droga/fisiologia , Proteína p300 Associada a E1A/metabolismo , Proteínas de Arcabouço Homer/genética , Masculino , Córtex Pré-Frontal/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , AutoadministraçãoRESUMO
Small non-coding RNAs are essential for transcription, translation and gene regulation in all cell types, but are particularly important in neurons, with known roles in neurodevelopment, neuroplasticity and neurological disease. Many small non-coding RNAs are directly involved in the post-transcriptional modification of other RNA species, while others are themselves substrates for modification, or are functionally modulated by modification of their target RNAs. In this review, we explore the known and potential functions of several distinct classes of small non-coding RNAs in the mammalian brain, focusing on the newly recognised interplay between the epitranscriptome and the activity of small RNAs. We discuss the potential for this relationship to influence the spatial and temporal dynamics of gene activation in the brain, and predict that further research in the field of epitranscriptomics will identify interactions between small RNAs and RNA modifications which are essential for higher order brain functions such as learning and memory.
RESUMO
Transcriptome-wide expression profiling of neurons has provided important insights into the underlying molecular mechanisms and gene expression patterns that transpire during learning and memory formation. However, there is a paucity of tools for profiling stimulus-induced RNA within specific neuronal cell populations. A bioorthogonal method to chemically label nascent (i.e., newly transcribed) RNA in a cell-type-specific and temporally controlled manner, which is also amenable to bioconjugation via click chemistry, was recently developed and optimized within conventional immortalized cell lines. However, its value within a more fragile and complicated cellular system such as neurons, as well as for transcriptome-wide expression profiling, has yet to be demonstrated. Here, we report the visualization and sequencing of activity-dependent nascent RNA derived from neurons using this labeling method. This work has important implications for improving transcriptome-wide expression profiling and visualization of nascent RNA in neurons, which has the potential to provide valuable insights into the mechanisms underlying neural plasticity, learning, and memory.