RESUMO
The opportunistic human pathogen Acinetobacter baumannii can grow with carnitine but its metabolism, regulation and role in virulence remained elusive. Recently, we identified a carnitine transporter encoded by a gene closely associated with potential carnitine degradation genes. Among those is a gene coding for a putative d-malate dehydrogenase (Mdh). Deletion of the mdh gene led to a loss of growth with carnitine but not l-malate; growth with d-malate was strongly reduced. Therefore, it is hypothesized that d-malate is formed during carnitine oxidation and further oxidized to CO2 and pyruvate and, that not, as previously suggested, l-malate is the product and funnelled directly into the TCA cycle. Mutant analyses revealed that the hydrolase in this cluster funnels acetylcarnitine into the degradation pathway by deacetylation. A transcriptional regulator CarR bound in a concentration-dependent manner to the intergenic region between the mdh gene, the first gene of the carnitine catabolic operon and the carR gene in the presence and absence of carnitine. Both carnitine and d-malate induced CarR-dependent expression of the carnitine operon. Infection studies with Galleria mellonella larvae demonstrated a strong increase in virulence by addition of carnitine indicating that carnitine degradation plays a pivotal role in virulence of A. baumannii.
Assuntos
Acinetobacter baumannii , Acetilcarnitina/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Dióxido de Carbono/metabolismo , Carnitina/metabolismo , Carnitina/farmacologia , DNA Intergênico , Humanos , Hidrolases/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Malatos/metabolismo , Piruvatos/metabolismo , Virulência/genéticaRESUMO
Nosocomial pathogens of the Acinetobacter calcoaceticus-baumannii (ACB) complex are a cautionary example for the world-wide spread of multi- and pan-drug resistant bacteria. Aiding the urgent demand for novel therapeutic targets, comparative genomics studies between pathogens and their apathogenic relatives shed light on the genetic basis of human-pathogen interaction. Yet, existing studies are limited in taxonomic scope, sensing of the phylogenetic signal, and resolution by largely analyzing genes independent of their organization in functional gene clusters. Here, we explored more than 3,000 Acinetobacter genomes in a phylogenomic framework integrating orthology-based phylogenetic profiling and microsynteny conservation analyses. We delineate gene clusters in the type strain A. baumannii ATCC 19606 whose evolutionary conservation indicates a functional integration of the subsumed genes. These evolutionarily stable gene clusters (ESGCs) reveal metabolic pathways, transcriptional regulators residing next to their targets but also tie together sub-clusters with distinct functions to form higher-order functional modules. We shortlisted 150 ESGCs that either co-emerged with the pathogenic ACB clade or are preferentially found therein. They provide a high-resolution picture of genetic and functional changes that coincide with the manifestation of the pathogenic phenotype in the ACB clade. Key innovations are the remodeling of the regulatory-effector cascade connecting LuxR/LuxI quorum sensing via an intermediate messenger to biofilm formation, the extension of micronutrient scavenging systems, and the increase of metabolic flexibility by exploiting carbon sources that are provided by the human host. We could show experimentally that only members of the ACB clade use kynurenine as a sole carbon and energy source, a substance produced by humans to fine-tune the antimicrobial innate immune response. In summary, this study provides a rich and unbiased set of novel testable hypotheses on how pathogenic Acinetobacter interact with and ultimately infect their human host. It is a comprehensive resource for future research into novel therapeutic strategies.
Assuntos
Infecções por Acinetobacter , Acinetobacter calcoaceticus , Infecções por Acinetobacter/genética , Infecções por Acinetobacter/microbiologia , Acinetobacter calcoaceticus/genética , Carbono , Humanos , Família Multigênica/genética , Filogenia , VirulênciaRESUMO
Acinetobacter baumannii can thrive on a broad range of substrates such as sugars, alcohols, lipids, amino acids and aromatic compounds. The latter three are abundant in the human host and are potential candidates as carbon sources for the metabolic adaptation of A. baumannii to the human host. In this study we determined the biodegradative activities of A. baumannii AYE with monocyclic aromatic compounds. Deletion of genes encoding the key enzymes of the ß-ketoadipate pathway, the protocatechuate-3,4-dioxygenase (ΔpcaHG) and the catechol-1,2-dioxygenase (ΔcatA), led to a complete loss of growth on benzoate and p-hydroxybenzoate, suggesting that these substrates are metabolized via the two distinct branches (pca and cat) of this pathway. Furthermore, we investigated the potential role of these gene products in host adaptation by analyzing the capability of the mutants to resist complement-mediated killing. These studies revealed that the mutants exhibit a decreased complement resistance, but a dramatic increase in survival in normal human serum in the presence of p-hydroxybenzoate or protocatechuate. These results indicate that the ß-ketoadipate pathway plays a role in adaptation of A. baumannii to the human host. Moreover, the single and double mutants exhibited increased antibiotic resistances indicating a link between the two dioxygenases and antibiotic resistance.
Assuntos
Acinetobacter baumannii , Acinetobacter , Acinetobacter/genética , Acinetobacter/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Adipatos/metabolismo , Antibacterianos/farmacologia , Benzoatos/metabolismoRESUMO
Acinetobacter baumannii is outstanding for its ability to cope with low water activities which significantly contributes to its persistence in hospital environments. The vast majority of bacteria are able to prevent loss of cellular water by amassing osmoactive compatible solutes or their precursors into the cytoplasm. One such precursor of an osmoprotectant is choline that is taken up from the environment and oxidized to the compatible solute glycine betaine. Here, we report the identification of the osmotic stress operon betIBA in A. baumannii. This operon encodes the choline oxidation pathway important for the production of the solute glycine betaine. The salt-sensitive phenotype of a betA deletion strain could not be rescued by addition of choline, which is consistent with the role of BetA in choline oxidation. We found that BetA is a choline dehydrogenase but also mediates in vitro the oxidation of glycine betaine aldehyde to glycine betaine. BetA was found to be associated with the membrane and to contain a flavin, indicative for BetA donating electrons into the respiratory chain. The choline dehydrogenase activity was not salt dependent but was stimulated by the compatible solute glutamate.
Assuntos
Acinetobacter baumannii , Colina Desidrogenase , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Betaína/metabolismo , Colina/metabolismo , Flavoproteínas , Pressão Osmótica , ÁguaRESUMO
Acinetobacter baumannii is an opportunistic pathogen, which has become a rising threat in healthcare facilities worldwide due to increasing antibiotic resistances and optimal adaptation to clinical environments and the human host. We reported in a former publication on the identification of three phopholipases of the phospholipase D (PLD) superfamily in A. baumannii ATCC 19606T acting in concerted manner as virulence factors in Galleria mellonella infection and lung epithelial cell invasion. This study focussed on the function of the three PLDs. A Δpld1-3 mutant was defect in biosynthesis of the phospholipids cardiolipin (CL) and monolysocardiolipin (MLCL), whereas the deletion of pld2 and pld3 abolished the production of MLCL. Complementation of the Δpld1-3 mutant with pld1 restored CL biosynthesis demonstrating that the PLD1 is implicated in CL biosynthesis. Complementation of the Δpld1-3 mutant with either pld2 or pld3 restored MLCL and CL production leading to the conclusion that PLD2 and PLD3 are implicated in CL and MLCL production. Mutant studies revealed that two catalytic motifs are essential for the PLD3-mediated biosynthesis of CL and MLCL. The Δpld1-3 mutant exhibited a decreased colistin and polymyxin B resistance indicating a role of CL in cationic antimicrobial peptides (CAMPs) resistance.
Assuntos
Acinetobacter baumannii/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Cardiolipinas/biossíntese , Farmacorresistência Bacteriana , Fosfolipase D/metabolismo , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lisofosfolipídeos/biossíntese , Mutação , Fosfolipase D/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismoRESUMO
Acinetobacter baumannii is outstanding for its ability to cope with low water activities and therefore its adaptation mechanism to osmotic stress. Here we report on the identification and characterization of five different secondary active compatible solute transporters, belonging to the betaine-choline-carnitine transporter (BCCT) family. Our studies revealed two choline-specific and three glycine betaine-specific BCCTs. Activity of the BCCTs was differentially dependent to the osmolality: one choline and one betaine transporter were osmostress-independent. Addition of choline to resting cells of Acinetobacter grown in the presence of the co-substrate choline or with phosphatidylcholine as sole carbon source led to ATP synthesis in the wild type but not in the BCCT quadruple mutant. This indicates that the BCCTs are essential to transport the energy substrate choline. The role of the different BCCTs in osmostress resistance and in metabolic adaptation of A. baumannii to the human host is discussed.
Assuntos
Acinetobacter baumannii/metabolismo , Adaptação Fisiológica/fisiologia , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Pressão Osmótica/fisiologia , Infecções por Acinetobacter/metabolismo , Proteínas de Bactérias/metabolismo , HumanosRESUMO
The opportunistic pathogen Acinetobacter baumannii is able to grow on carnitine. The genes encoding the pathway for carnitine degradation to the intermediate malic acid are known but the transporter mediating carnitine uptake remained to be identified. The open reading frame HMPREF0010_01347 (aci01347) of Acinetobacter baumannii is annotated as a gene encoding a potential transporter of the betaine/choline/carnitine transporter (BCCT) family. To study the physiological function of Aci01347, the gene was deleted from A. baumannii ATCC 19606. The mutant was no longer able to grow on carnitine as sole carbon and energy source demonstrating the importance of this transporter for carnitine metabolism. Aci01347 was produced in Escherichia coli MKH13, a strain devoid of any compatible solute transporter, and the recombinant E. coli MKH13 strain was found to take up carnitine in an energy-dependent fashion. Aci01347 also transported choline, a compound known to be accumulated under osmotic stress. Choline transport was osmolarity-independent which is consistent with the absence of an extended C-terminus found in osmo-activated BCCT. We propose that the Aci01347 is the carnitine transporter mediating the first step in the growth of A. baumannii on carnitine.