Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3006, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321094

RESUMO

The large Weilasituo Sn-polymetallic deposit is a recent exploration discovery in the southern Great Xing'an Range, northeast China. The ore cluster area shows horizontal mineralization zoning, from the inner granite body outward, consisting of high-T Sn-W-Li mineralization, middle-T Cu-Zn mineralization and peripheral low-T Pb-Zn-Ag mineralization. However, the intrinsic genetic relationship between Sn-W-Li mineralization and peripheral vein-type Pb-Zn-Ag-Cu mineralization, the formation mechanism and the deep geological background are still insufficiently understood. Here, we use fluid inclusions, trace elements concentrations in quartz and sphalerite, and H-O isotope studies to determine the genetic mechanism and establish a metallogenic model. Fluid inclusion microthermometry and Laser Raman spectroscopic analysis results demonstrates that the aqueous ore-forming fluids evolved from low-medium salinity, medium-high temperature to low salinity, low-medium temperature fluids. Laser Raman spectroscopic analysis shows that CH4 is ubiquitous in fluid inclusions of all ore stages. Early ore fluids have δ18OH2O (v-SMOW) values from + 5.5 to + 6.2‰ and δD values of approximately - 67‰, concordant with a magmatic origin. However, the late ore fluids shifted toward lower δ18OH2O (v-SMOW) (as low as 0.3‰) and δD values (~ - 136‰), suggesting mixing between external fluids derived from the wall rocks and a contribution from meteoric water. Ti-in-quartz thermometry indicates a magmatic crystallization temperature of around 700 °C at a pressure of 1.5 kbar for the magmatic ore stage. Cathodoluminescence (CL) imaging and trace element analysis of quartz from a hydrothermal vug highlight at least three growth episodes that relate to different fluid pulses; each episode begins with CL-bright, Al-Li-rich quartz, and ends with CL-dark quartz with low Al and Li contents. Quartz from Episode 1 formed from early Sn-(Zn)-rich fluids which were likely derived from the quartz porphyry. Quartz from episodes 2 and 3 formed from Zn-(Sn)-Cu-rich fluid. The early magmatic fluid is characterized by low fS2. The SO2 produced by magma degassing reacted with heated water to form SO42-, causing the shift from low fS2 to high fS2. The SO42- generated was converted to S2- by mixing with CH4-rich, Fe and Zn-bearing external fluid which led to late-stage alteration and dissolution of micas in vein walls, thus promoting crystallization of pyrrhotite, Fe-rich sphalerite and chalcopyrite and inhibiting the precipitation of anhydrite. This study shows that ore formation encompassed multiple episodes involving steadily evolved fluids, and that the addition of external fluids plays an important role in the formation of the later Cu-Zn and Ag-Pb-Zn mineralization in the Weilasituo ore district.

2.
Phys Chem Miner ; 47(5): 24, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390681

RESUMO

In this study, we present the first systematic dataset on natural variations of OH defect and trace element contents in quartz within igneous bodies. Samples were derived from bore holes of two plutonic bodies from the Krusné Hory/Erzgebirge (German-Czech border), representing typical A-type (Cínovec/Zinnwald granite cupola) and S-type (Podlesí Stock) granite intrusions. Fourier Transform Infrared spectroscopy of quartz was used to investigate the sample set with regard to its OH defect speciation and content. For Zinnwald quartz, IR absorption spectra reveal different lithologies due to changes of the OH defect inventory, enabling a subdivision of the granitic body: (1) hydrothermal greisen quartz of the uppermost part of the intrusion have low OH defect contents (average of 15 µg/g H2O); (2) zinnwaldite granite quartz vary strongly in defect content and show the highest content of the dataset (10-70 µg/g H2O); (3) quartz from an underlying biotite granite have slightly lower, but very uniform contents down to the bottom of the borehole at 1600 m (average 20 µg/g H2O). Infrared spectra of Podlesí quartz reveal a gradual increase in total defect water content with increasing depth over 350 m (30-55 µg/g H2O). Lithium contents in quartz samples from the uppermost part of the Zinnwald intrusion correlate with the occurrence of Li-specific OH defects, while cathodoluminescence (CL) images do not show specific differences. Our findings evidence the potential of OH defects in quartz as a tool to decipher differentiation trends in igneous bodies, and the application of their eroded material for provenance analyses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA