Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Immunol ; 202(12): 3423-3433, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31085591

RESUMO

Induction of programmed DNA damage and its recognition and repair are fundamental for B cell development. The ssDNA-binding protein SSB1 has been described in human cells as essential for the recognition and repair of DNA damage. To study its relevance for B cells, we recently developed Ssb1 -/- and conditional Ssb1 -/- mice. Although SSB1 loss did not affect B cell development, Ssb1 -/- cells exhibited compensatory expression of its homolog SSB2. We have now generated Ssb2 -/- mice and show in this study that SSB2 is also dispensable for B cell development and DNA damage response activation. In contrast to the single loss of Ssb1 or Ssb2, however, combined SSB1/2 deficiency caused a defect in early B cell development. We relate this to the sensitivity of B cell precursors as mature B cells largely tolerated their loss. Toxicity of combined genetic SSB1/2 loss can be rescued by ectopic expression of either SSB1 or SSB2, mimicked by expression of SSB1 ssDNA-binding mutants, and attenuated by BCL2-mediated suppression of apoptosis. SSB1/2 loss in B cell precursors further caused increased exposure of ssDNA associated with disruption of genome fragile sites, inefficient cell cycle progression, and increased DNA damage if apoptosis is suppressed. As such, our results establish SSB1/2 as safeguards of B cell development and unveil their differential requirement in immature and mature B lymphocytes.


Assuntos
Linfócitos B/fisiologia , Proteínas de Ligação a DNA/metabolismo , Células Precursoras de Linfócitos B/fisiologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Apoptose , Diferenciação Celular , Células Cultivadas , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/genética , Genoma/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética
2.
Sci Rep ; 7(1): 4310, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28655934

RESUMO

Potentially mutagenic DNA lesions induced by UVB (wavelengths 280-320 nm) are important risk factors for solar ultraviolet (UV) radiation-induced skin cancer. The carcinogenicity of the more abundant UVA (320-400 nm) is less well understood but is generally regarded to reflect its interaction with cellular chromophores that act as photosensitisers. The arylhydrocarbon receptor agonist 6-formylindolo[3,2-b] carbazole (FICZ), is a UVB photoproduct of tryptophan and a powerful UVA chromophore. Combined with UVA, FICZ generates reactive oxygen species (ROS) and induces oxidative DNA damage. Here we demonstrate that ROS generated by FICZ/UVA combinations also cause extensive protein damage in HaCaT human keratinocytes. We show that FICZ/UVA-induced oxidation significantly inhibits the removal of potentially mutagenic UVB-induced DNA photolesions by nucleotide excision repair (NER). DNA repair inhibition is due to FICZ/UVA-induced oxidation damage to the NER proteome and DNA excision repair is impaired in extracts prepared from FICZ/UVA-treated cells. NER protects against skin cancer. As a likely UVB photoproduct of intracellular tryptophan, FICZ represents a de facto endogenous UVA photosensitiser in sun-exposed skin. FICZ formation may increase the risk of solar UV-induced skin cancer by promoting photochemical damage to the NER proteome and thereby preventing the removal of UVB-induced DNA lesions.


Assuntos
Carbazóis/farmacologia , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Triptofano/metabolismo , Raios Ultravioleta/efeitos adversos , Dano ao DNA , Humanos , Oxirredução
3.
Free Radic Biol Med ; 107: 101-109, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27989755

RESUMO

UVA accounts for about 95% of the solar ultraviolet (UV) radiation that reaches Earth and most likely contributes to human skin cancer risk. In contrast to UVB, which comprises the remaining 5% and is absorbed by DNA nucleobases to cause direct photodamage, UVA damages DNA indirectly. It does this largely through its interactions with cellular chromophores that act as photosensitisers to generate reactive oxygen species. Exogenously supplied chemicals, including some widely-prescribed medicines, may also act as photosensitisers and these drugs are associated with an increased risk of sun-related cancer. Because they amplify the effects of UVA on cells, they provide a means to investigate the mechanisms and effects of UVA-induced photodamage. Here, we describe some of the major lesions induced by two groups of UVA photosensitisers, the DNA thionucleotides and the fluoroquinolone antibiotics. In thionucleotides, replacement of the oxygen atoms of canonical nucleobases by sulfur converts them into strong UVA chromophores that can be incorporated into DNA. The fluoroquinolones are also UVA chromophores. They are not incorporated into DNA and induce a different range of DNA damages. We also draw attention to the potentially important contribution of photochemical protein damage to the cellular effects of photosensitised UVA. Proteins targeted for oxidation damage include DNA repair factors and we suggest that UVA-mediated protein damage may contribute to sunlight-induced cancer risk.


Assuntos
Antibacterianos/química , Dano ao DNA , DNA/efeitos da radiação , Fluoroquinolonas/química , Estresse Oxidativo , Neoplasias Cutâneas/metabolismo , Tionucleotídeos/química , Antibacterianos/uso terapêutico , Reparo do DNA , Fluoroquinolonas/uso terapêutico , Humanos , Oxirredução , Fármacos Fotossensibilizantes , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Cutâneas/patologia , Tionucleotídeos/uso terapêutico , Raios Ultravioleta/efeitos adversos
4.
DNA Repair (Amst) ; 44: 178-185, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27324272

RESUMO

Solar UVB is carcinogenic. Nucleotide excision repair (NER) counteracts the carcinogenicity of UVB by excising potentially mutagenic UVB-induced DNA lesions. Despite this capacity for DNA repair, non-melanoma skin cancers and apparently normal sun-exposed skin contain huge numbers of mutations that are mostly attributable to unrepaired UVB-induced DNA lesions. UVA is about 20-times more abundant than UVB in incident sunlight. It does cause some DNA damage but this does not fully account for its biological impact. The effects of solar UVA are mediated by its interactions with cellular photosensitizers that generate reactive oxygen species (ROS) and induce oxidative stress. The proteome is a significant target for damage by UVA-induced ROS. In cultured human cells, UVA-induced oxidation of DNA repair proteins inhibits DNA repair. This article addresses the possible role of oxidative stress and protein oxidation in determining DNA repair efficiency - with particular reference to NER and skin cancer risk.


Assuntos
Enzimas Reparadoras do DNA/antagonistas & inibidores , Reparo do DNA/efeitos da radiação , Melanoma/metabolismo , Neoplasias Induzidas por Radiação/química , Neoplasias Cutâneas/metabolismo , Dano ao DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Queratinócitos/efeitos da radiação , Melanoma/etiologia , Melanoma/patologia , Mutação , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/metabolismo , Neoplasias Induzidas por Radiação/patologia , Oxirredução , Estresse Oxidativo , Fármacos Fotossensibilizantes/agonistas , Fármacos Fotossensibilizantes/metabolismo , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Pele/metabolismo , Pele/patologia , Pele/efeitos da radiação , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/patologia , Luz Solar/efeitos adversos , Raios Ultravioleta/efeitos adversos
5.
Mol Cancer Res ; 14(7): 612-22, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27106867

RESUMO

UNLABELLED: The relationship between sun exposure and nonmelanoma skin cancer risk is well established. Solar UV (wavelength 280-400 nm) is firmly implicated in skin cancer development. Nucleotide excision repair (NER) protects against cancer by removing potentially mutagenic DNA lesions induced by UVB (280-320 nm). How the 20-fold more abundant UVA (320-400 nm) component of solar UV radiation increases skin cancer risk is not understood. Here it is demonstrated that the contribution of UVA to the effect of UV radiation on cultured human cells is largely independent of its ability to damage DNA. Instead, the effects of UVA reflect the induction of oxidative stress that causes extensive protein oxidation. Because NER proteins are among those damaged, UVA irradiation inhibits NER and increases the susceptibility of the cells to mutation by UVB. NER inhibition is a common consequence of oxidative stress. Exposure to chemical oxidants, treatment with drugs that deplete cellular antioxidants, and interventions that interfere with glucose metabolism to disrupt the supply of cellular reducing power all inhibit NER. Tumor cells are often in a condition of oxidative stress and one effect of the NER inhibition that results from stress-induced protein oxidation is an increased sensitivity to the anticancer drug cisplatin. IMPLICATIONS: As NER is both a defense against cancer and a significant determinant of cell survival after treatment with anticancer drugs, its attenuation by protein damage under conditions of oxidative stress has implications for both cancer risk and for the effectiveness of anticancer therapy. Mol Cancer Res; 14(7); 612-22. ©2016 AACR.


Assuntos
Reparo do DNA/efeitos da radiação , Estresse Oxidativo/genética , Linhagem Celular Tumoral , Dano ao DNA , Células HeLa , Humanos , Queratinócitos/metabolismo , Queratinócitos/fisiologia , Queratinócitos/efeitos da radiação , Mutagênese/efeitos da radiação , Mutação , Estresse Oxidativo/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Fatores de Risco , Raios Ultravioleta
6.
J Invest Dermatol ; 135(11): 2834-2841, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26134950

RESUMO

Nucleotide excision repair (NER) protects against sunlight-induced skin cancer. Defective NER is associated with photosensitivity and a high skin cancer incidence. Some clinical treatments that cause photosensitivity can also increase skin cancer risk. Among these, the immunosuppressant azathioprine and the fluoroquinolone antibiotics ciprofloxacin and ofloxacin interact with UVA radiation to generate reactive oxygen species that diminish NER capacity by causing protein damage. The replication protein A (RPA) DNA-binding protein has a pivotal role in DNA metabolism and is an essential component of NER. The relationship between protein oxidation and NER inhibition was investigated in cultured human cells expressing different levels of RPA. We show here that RPA is limiting for NER and that oxidative damage to RPA compromises NER capability. Our findings reveal that cellular RPA is surprisingly vulnerable to oxidation, and we identify oxidized forms of RPA that are associated with impaired NER. The vulnerability of NER to inhibition by oxidation provides a connection between cutaneous photosensitivity, protein damage, and increased skin cancer risk. Our findings emphasize that damage to DNA repair proteins, as well as to DNA itself, is likely to be an important contributor to skin cancer risk.


Assuntos
Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/metabolismo , Transtornos de Fotossensibilidade/fisiopatologia , Proteína de Replicação A/efeitos da radiação , Neoplasias Cutâneas/fisiopatologia , Raios Ultravioleta/efeitos adversos , Células Cultivadas , Dano ao DNA/genética , Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Ensaio de Imunoadsorção Enzimática , Humanos , Immunoblotting , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Estresse Oxidativo , Transtornos de Fotossensibilidade/etiologia , Fármacos Fotossensibilizantes/efeitos adversos , Fármacos Fotossensibilizantes/farmacologia , Proteína de Replicação A/efeitos dos fármacos , Proteína de Replicação A/metabolismo , Neoplasias Cutâneas/etiologia , Tioguanina/metabolismo
7.
J Photochem Photobiol B ; 145: 1-10, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25747491

RESUMO

Photochemotherapy, the combination of a photosensitiser and ultraviolet (UV) or visible light, is an effective treatment for skin conditions including cancer. The high mutagenicity and non-selectivity of photochemotherapy regimes warrants the development of alternative approaches. We demonstrate that the thiopyrimidine nucleosides 5-bromo-4-thiodeoxyuridine (SBrdU) and 5-iodo-4-thiodeoxyuridine (SIdU) are incorporated into the DNA of cultured human and mouse cells where they synergistically sensitise killing by low doses of UVA radiation. The DNA halothiopyrimidine/UVA combinations induce DNA interstrand crosslinks, DNA-protein crosslinks, DNA strand breaks, nucleobase damage and lesions that resemble UV-induced pyrimidine(6-4)pyrimidone photoproducts. These are potentially lethal DNA lesions and cells defective in their repair are hypersensitive to killing by SBrdU/UVA and SIdU/UVA. DNA SIdU and SBrdU generate lethal DNA photodamage by partially distinct mechanisms that reflect the different photolabilities of their C-I and C-Br bonds. Although singlet oxygen is involved in photolesion formation, DNA SBrdU and SIdU photoactivation does not detectably increase DNA 8-oxoguanine levels. The absence of significant collateral damage to normal guanine suggests that UVA activation of DNA SIdU or SBrdU might offer a strategy to target hyperproliferative skin conditions that avoids the extensive formation of a known mutagenic DNA lesion.


Assuntos
DNA/química , Tiouridina/análogos & derivados , Raios Ultravioleta , Animais , Linhagem Celular , DNA/metabolismo , Dano ao DNA/efeitos da radiação , DNA Glicosilases/química , DNA Glicosilases/metabolismo , Halogenação , Células HeLa , Humanos , Camundongos , Oxirredução , Dímeros de Pirimidina/química , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Tiouridina/síntese química , Tiouridina/química
8.
Nucleic Acids Res ; 42(22): 13714-22, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25414333

RESUMO

Cutaneous photosensitization is a common side effect of drug treatment and can be associated with an increased skin cancer risk. The immunosuppressant azathioprine, the fluoroquinolone antibiotics and vemurafenib-a BRAF inhibitor used to treat metastatic melanoma-are all recognized clinical photosensitizers. We have compared the effects of UVA radiation on cultured human cells treated with 6-thioguanine (6-TG, a DNA-embedded azathioprine surrogate), the fluoroquinolones ciprofloxacin and ofloxacin and vemurafenib. Despite widely different structures and modes of action, each of these drugs potentiated UVA cytotoxicity. UVA photoactivation of 6-TG, ciprofloxacin and ofloxacin was associated with the generation of singlet oxygen that caused extensive protein oxidation. In particular, these treatments were associated with damage to DNA repair proteins that reduced the efficiency of nucleotide excision repair. Although vemurafenib was also highly phototoxic to cultured cells, its effects were less dependent on singlet oxygen. Highly toxic combinations of vemurafenib and UVA caused little protein carbonylation but were nevertheless inhibitory to nucleotide excision repair. Thus, for three different classes of drugs, photosensitization by at least two distinct mechanisms is associated with reduced protection against potentially mutagenic and carcinogenic DNA damage.


Assuntos
Antibacterianos/toxicidade , Antineoplásicos/toxicidade , Reparo do DNA/efeitos dos fármacos , Fluoroquinolonas/toxicidade , Indóis/toxicidade , Fármacos Fotossensibilizantes/toxicidade , Carbonilação Proteica/efeitos dos fármacos , Sulfonamidas/toxicidade , Raios Ultravioleta/efeitos adversos , Linhagem Celular , Ciprofloxacina/toxicidade , Reparo do DNA/efeitos da radiação , Células HeLa , Humanos , Ofloxacino/toxicidade , Antígeno Nuclear de Célula em Proliferação/análise , Carbonilação Proteica/efeitos da radiação , Tioguanina/toxicidade , Vemurafenib
10.
J Invest Dermatol ; 134(5): 1408-1417, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24284422

RESUMO

Damage to skin DNA by solar UV is largely unavoidable, and an optimal cellular response to it requires the coordinated operation of proteins in numerous pathways. A fully functional DNA repair proteome for removing harmful DNA lesions is a prerequisite for an appropriate DNA damage response. Genetically determined failure to repair UV-induced DNA damage is associated with skin photosensitivity and increased skin cancer risk. Patients treated with immunosuppressant/anti-inflammatory thiopurines are also photosensitive and have high rates of sun-related skin cancer. Their DNA contains the base analog 6-thioguanine (6-TG), which acts as a UVA photosensitizer to generate reactive oxygen species (ROS), predominantly singlet oxygen ((1)O2). ROS damage both DNA and proteins. Here we show that UVA irradiation of cultured human cells containing DNA 6-TG causes significant protein oxidation and damages components of the DNA repair proteome, including the Ku, OGG-1, MYH, and RPA proteins. Assays of DNA repair in intact cells or in cell extracts indicate that this protein damage compromises DNA break rejoining and base and nucleotide excision repair. As these experimental conditions simulate those in the skin of patients taking thiopurines, our findings suggest a mechanism whereby UVA in sunlight may contribute to skin carcinogenesis in immunosuppressed patients.


Assuntos
Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Transtornos de Fotossensibilidade/metabolismo , Tioguanina/farmacologia , Raios Ultravioleta/efeitos adversos , Animais , Anti-Inflamatórios/efeitos adversos , Antimetabólitos Antineoplásicos/farmacologia , Cricetinae , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/efeitos da radiação , DNA Glicosilases/metabolismo , DNA Helicases/metabolismo , Fibroblastos/citologia , Células HeLa , Humanos , Imunossupressores/efeitos adversos , Autoantígeno Ku , Leucemia , Oxirredução , Transtornos de Fotossensibilidade/patologia , Proteoma/metabolismo , Fatores de Risco , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/etiologia
11.
Cancer Res ; 72(18): 4787-95, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22822082

RESUMO

The thiopurines azathioprine and 6-mercaptopurine have been extensively prescribed as immunosuppressant and anticancer agents for several decades. A third member of the thiopurine family, 6-thioguanine (6-TG), has been used less widely. Although known to be partly dependent on DNA mismatch repair (MMR), the cytotoxicity of 6-TG remains incompletely understood. Here, we describe a novel MMR-independent pathway of 6-TG toxicity. Cell killing depended on two properties of 6-TG: its incorporation into DNA and its ability to act as a source of reactive oxygen species (ROS). ROS targeted DNA 6-TG to generate potentially lethal replication-arresting DNA lesions including interstrand cross-links. These triggered processing by the Fanconi anemia and homologous recombination DNA repair pathways. Allopurinol protected against 6-TG toxicity by acting as a ROS scavenger and preventing DNA damage. Together, our findings provide mechanistic evidence to support the proposed use of thiopurines to treat HR-defective tumors and for the coadministration of 6-TG and allopurinol as an immunomodulation strategy in inflammatory disorders.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , DNA/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Tioguanina/farmacologia , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/farmacologia , Dano ao DNA/efeitos dos fármacos , Anemia de Fanconi/metabolismo , Humanos , Immunoblotting , Espécies Reativas de Oxigênio/metabolismo
12.
Photochem Photobiol ; 88(1): 5-13, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22077233

RESUMO

Thiopurines are prescribed frequently as medication for cancer and for inflammatory disorders. One of them, azathioprine, has been the immunosuppressant of choice for organ transplant recipients for many years. Thiopurine use is associated with elevated sun sensitivity and skin cancer risk. Skin sensitization is selective for UVA. 6-TG integrates into DNA and unlike the canonical DNA bases, it is a strong UVA chromophore with an absorbance maximum at 342 nm. DNA 6-TG is a photosensitizer and a source of reactive oxygen species. Reactive oxygen that is generated from the photochemical activation of DNA 6-TG causes extensive damage to DNA and proteins. This damage is mutagenic and extremely toxic to cultured human cells. Here we describe some of the lesions that are known to be generated from UVA irradiation of DNA 6-TG. We discuss how this photochemical damage might contribute to the toxic effect of thiopurine/UVA treatment on cultured cells and to the high risk of skin cancer in thiopurine-treated patients.


Assuntos
Dano ao DNA , Tioguanina/química , Raios Ultravioleta , Fotoquímica , Espécies Reativas de Oxigênio/química
13.
FEBS Lett ; 585(24): 3941-6, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22062154

RESUMO

The anticancer and immunosuppressant thiopurines cause 6-thioguanine (6-TG) to accumulate in nuclear DNA. We report that 6-TG is also readily incorporated into mitochondrial DNA (mtDNA) where it is rapidly oxidized. The oxidized forms of mtDNA 6-TG inhibit replication by DNA Pol-γ. Accumulation of oxidized 6-TG is associated with reduced mtDNA transcription, a decline in mitochondrial protein levels, and loss of mitochondrial function. Ultraviolet A radiation (UVA) also oxidizes mtDNA 6-TG. Cells without mtDNA are less sensitive to killing by a combination of 6-TG and UVA than their mtDNA-containing counterparts, indicating that photochemical mtDNA 6-TG oxidation contributes to 6-TG-mediated UVA photosensitization.


Assuntos
Dano ao DNA , DNA Mitocondrial/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Tioguanina/efeitos adversos , Trifosfato de Adenosina/biossíntese , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Núcleo Celular/efeitos da radiação , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/efeitos da radiação , DNA Mitocondrial/biossíntese , DNA Mitocondrial/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Células HCT116 , Humanos , Cinética , Camundongos , Mitocôndrias/genética , Mitocôndrias/efeitos da radiação , Oxirredução , Tioguanina/metabolismo , Fatores de Tempo , Raios Ultravioleta
14.
DNA Repair (Amst) ; 10(8): 869-76, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21723207

RESUMO

Patients taking the immunosuppressant and anticancer thiopurines 6-mercaptopurine, azathioprine or 6-thioguanine (6-TG), develop skin cancer at a very high frequency. Their DNA contains 6-TG which absorbs ultraviolet A (UVA) radiation, and their skin is UVA hypersensitive, consistent with the formation of DNA photodamage. Here we demonstrate that UVA irradiation of 6-TG-containing DNA causes DNA interstrand crosslinking. In synthetic duplex oligodeoxynucleotides, the interstrand crosslinks (ICLs) can form between closely opposed 6-TG bases and, in a less favoured reaction, between 6-TG and normal bases on the opposite strand. In vivo, UVA irradiation of cultured cells containing 6-TG-substituted DNA also causes ICL formation and induces the chromosome aberrations that are characteristically associated with this type of DNA lesion. 6-TG/UVA activates the Fanconi anemia (FA) pathway via monoubiquitination of the FANCD2 protein. Cells defective in the FA pathway or other factors involved in ICL processing, such as XPF and DNA Polζ, are all hypersensitive to killing by 6-TG/UVA-consistent with a significant contribution of photochemical ICLs to the cytotoxicity of this treatment. Our findings suggest that sunlight-exposed skin of thiopurine treated patients may experience chronic photochemical DNA damage that requires constant intervention of the FA pathway.


Assuntos
Reagentes de Ligações Cruzadas/química , Polidesoxirribonucleotídeos/química , Tioguanina/química , Raios Ultravioleta , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Aberrações Cromossômicas/efeitos dos fármacos , Aberrações Cromossômicas/efeitos da radiação , Reagentes de Ligações Cruzadas/farmacologia , Reparo do DNA , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Instabilidade Genômica/efeitos dos fármacos , Instabilidade Genômica/efeitos da radiação , Humanos , Camundongos , Tioguanina/farmacologia
15.
Nucleic Acids Res ; 37(6): 1951-61, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19208641

RESUMO

Long-term treatment with the anticancer and immunosuppressant thiopurines, azathioprine or 6-mercaptopurine, is associated with acute skin sensitivity to ultraviolet A (UVA) radiation and a high risk of skin cancer. 6-thioguanine (6-TG) that accumulates in the DNA of thiopurine-treated patients interacts with UVA to generate reactive oxygen species. These cause lethal and mutagenic DNA damage. Here we show that the UVA/DNA 6-TG interaction rapidly, and essentially irreversibly, inhibits transcription in cultured human cells and provokes polyubiquitylation of the major subunit of RNA polymerase II (RNAPII). In vitro, 6-TG photoproducts, including the previously characterized guanine-6-sulfonate, in the transcribed DNA strand, are potent blocks to RNAPII transcription whereas 6-TG is only slightly inhibitory. In vivo, guanine-6-sulfonate is removed poorly from DNA and persists to a similar extent in the DNA of nucleotide excision repair-proficient and defective cells. Furthermore, transcription coupled repair-deficient Cockayne syndrome cells are not hypersensitive to UVA/6-TG, indicating that potentially lethal photoproducts are not selectively excised from transcribed DNA. Since persistent transcription-blocking DNA lesions are associated with acute skin responses to sunlight and the development of skin cancer, our findings have implications for skin cancer in patients undergoing thiopurine therapy.


Assuntos
Antimetabólitos Antineoplásicos/metabolismo , Dano ao DNA , Espécies Reativas de Oxigênio/metabolismo , Tioguanina/metabolismo , Transcrição Gênica , Raios Ultravioleta , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/efeitos da radiação , Linhagem Celular , DNA/química , DNA/metabolismo , Reparo do DNA , Humanos , RNA Polimerase II/metabolismo , Tioguanina/farmacologia , Tioguanina/efeitos da radiação , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/efeitos da radiação
16.
DNA Repair (Amst) ; 7(6): 849-57, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18375193

RESUMO

X-ray repair cross-complementing 1 (XRCC1) is required for DNA single-strand break and base excision repair (BER) in human cells. XRCC1-deficient human cells show hypersensitivity to cell killing, increased genetic instability and a significant delay in S-phase progression after exposure to the alkylating agent methyl methanesulfonate (MMS). Using RNAi modulation of XRCC1 levels, we show here that this S-phase delay is associated with significantly increased levels of recombinational repair as visualized by Rad51 focus formation. Using ATM- and ATR-defective cells and an ATM specific kinase inhibitor we demonstrate for the first time that the MMS-induced S-phase checkpoint requires both ATM and ATR. This unique dependency is associated with phosphorylation of ATM/ATR downstream targets or effectors such as SMC1 and Chk1. These results support the hypothesis that after MMS-treatment, the presence of unresolved BER intermediates gives rise to lesions that activate both ATM and ATR and that during the consequent S-phase delay, such intermediates may be repaired by a recombinational pathway which involves the Rad51 protein.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Metanossulfonato de Metila/farmacologia , Proteínas Serina-Treonina Quinases/fisiologia , Fase S/efeitos dos fármacos , Proteínas Supressoras de Tumor/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
17.
Carcinogenesis ; 27(12): 2469-74, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16829685

RESUMO

X-ray repair cross-complementing 1 (XRCC1) is required for single-strand break repair in human cells and several polymorphisms in this gene have been implicated in cancer risk and clinical prognostic factors. We examined the frequency of the 5'-untranslated region (5'-UTR) variant -77T-->C (rs 3213235) in 247 French breast cancer (BC) patients, 66 of whom were adverse radiotherapy responders, and 380 controls and determined the haplotypes based on this and the previously genotyped variants Arg194Trp, Arg280His and Arg399Gln. The -77T-->C variant alone showed no significant association with BC risk or therapeutic radiation sensitivity. The H5 haplotype (variant allele codon 280, wild-type allele other positions) was associated with increased BC risk [odds ratio (OR), 1.90; 95% confidence interval (CI), 1.12-3.23] and the H3 haplotype (wild-type allele all four positions) was inversely associated with therapeutic radiation sensitivity compared with the reference group (H1 haplotype, -77C, wild-type allele codons 194, 280, 399) (OR, 0.39; 95% CI, 0.16-0.92). However given that the global tests for association were not significant these results should be interpreted carefully. Lymphoblastoid cell lines heterozygous for the H1/H3 haplotypes had a significantly higher cell survival (P=0.04) after exposure to ionising radiation (IR) than those with the H1/H1 haplotypes, in agreement with the association study. However no haplotype-specific differences in XRCC1 expression or cell cycle progression were noted in the 24 h following IR exposure. These results suggest that the -77T-->C genotype or another variant in linkage disequilibrium influences the cellular response to DNA damage, although the underlying molecular mechanisms remain to be established.


Assuntos
Neoplasias da Mama/epidemiologia , Neoplasias da Mama/radioterapia , Dano ao DNA , Proteínas de Ligação a DNA/genética , Variação Genética , Polimorfismo de Nucleotídeo Único , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ciclo Celular , Sobrevivência Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Desequilíbrio de Ligação , Fatores de Risco , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
18.
Nucleic Acids Res ; 33(8): 2512-20, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15867196

RESUMO

The X-ray repair cross complementing 1 (XRCC1) protein is required for viability and efficient repair of DNA single-strand breaks (SSBs) in rodents. XRCC1-deficient mouse or hamster cells are hypersensitive to DNA damaging agents generating SSBs and display genetic instability after such DNA damage. The presence of certain polymorphisms in the human XRCC1 gene has been associated with altered cancer risk, but the role of XRCC1 in SSB repair (SSBR) in human cells is poorly defined. To elucidate this role, we used RNA interference to modulate XRCC1 protein levels in human cell lines. A reduction in XRCC1 protein levels resulted in decreased SSBR capacity as measured by the comet assay and intracellular NAD(P)H levels, hypersensitivity to the cell killing effects of the DNA damaging agents methyl methanesulfonate (MMS), hydrogen peroxide and ionizing radiation and enhanced formation of micronuclei following exposure to MMS. Lowered XRCC1 protein levels were also associated with a significant delay in S-phase progression after exposure to MMS. These data clearly demonstrate that XRCC1 is required for efficient SSBR and genomic stability in human cells.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Ensaio Cometa , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Humanos , Metanossulfonato de Metila/toxicidade , Testes para Micronúcleos , NADP/metabolismo , Interferência de RNA , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA