RESUMO
PKCθ plays an important role in T cell biology and is a validated target for a number of disease states. A series of potent and selective PKCθ inhibitors were designed and synthesized starting from a HTS hit compound. Cell activity, while initially a challenge to achieve, was built into the series by transforming the nitrile unit of the scaffold into a primary amine, the latter predicted to form a new hydrogen bond to Asp508 near the entrance of the ATP binding site of PKCθ. Significant improvements in physiochemical parameters were observed on introduction of an oxetane group proximal to a primary amine leading to compound 22, which demonstrated a reduction of symptoms in a mouse model of multiple sclerosis.
RESUMO
Extensive phase II metabolism of an advanced PKCε inhibitor resulted in sub-optimal pharmacokinetics in rat marked by elevated clearance. Synthesis of the O-glucuronide metabolite as a standard was followed by three distinct strategies to specifically temper phase II metabolic degradation of the parent molecule. In this study, it was determined that the introduction of proximal polarity to the primary alcohol generally curbed O-glucuronidation and improved PK and physical chemical properties while maintaining potency against the target. Utilization of a Jacobsen hydrolytic kinetic resolution to obtain optically enriched final compounds is also discussed.
Assuntos
Glucuronídeos/farmacologia , Proteína Quinase C-épsilon/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Cães , Relação Dose-Resposta a Droga , Glucuronídeos/química , Glucuronídeos/metabolismo , Estrutura Molecular , Proteína Quinase C-épsilon/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Relação Estrutura-AtividadeRESUMO
Protein kinase C θ (PKCθ) has a central role in T cell activation and survival; however, the dependency of T cell responses to the inhibition of this enzyme appears to be dictated by the nature of the antigen and by the inflammatory environment. Studies in PKCθ-deficient mice have demonstrated that while antiviral responses are PKCθ-independent, T cell responses associated with autoimmune diseases are PKCθ-dependent. Thus, potent and selective inhibition of PKCθ is expected to block autoimmune T cell responses without compromising antiviral immunity. Herein, we describe the development of potent and selective PKCθ inhibitors, which show exceptional potency in cells and in vivo. By use of a structure based rational design approach, a 1000-fold improvement in potency and 76-fold improvement in selectivity over closely related PKC isoforms such as PKCδ were obtained from the initial HTS hit, together with a big improvement in lipophilic efficiency (LiPE).
Assuntos
Doenças Autoimunes/tratamento farmacológico , Isoenzimas/antagonistas & inibidores , Piperazinas/síntese química , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Piridinas/síntese química , Animais , Desenho de Fármacos , Humanos , Concentração Inibidora 50 , Interleucina-2/antagonistas & inibidores , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Piperazinas/farmacocinética , Proteína Quinase C-theta , Piridinas/farmacocinética , Linfócitos T/imunologiaRESUMO
Interleukin-2 inducible T-cell kinase (Itk) plays a role in T-cell functions, and its inhibition potentially represents an attractive intervention point to treat autoimmune and allergic diseases. Herein we describe the discovery of a series of potent and selective novel inhibitors of Itk. These inhibitors were identified by structure-based design, starting from a fragment generated de novo, the 3-aminopyrid-2-one motif. Functionalization of the 3-amino group enabled rapid enhancement of the inhibitory activity against Itk, while introduction of a substituted heteroaromatic ring in position 5 of the pyridone fragment was key to achieving optimal selectivity over related kinases. A careful analysis of the hydration patterns in the kinase active site was necessary to fully explain the observed selectivity profile. The best molecule prepared in this optimization campaign, 7v, inhibits Itk with a K(i) of 7 nM and has a good selectivity profile across kinases.