Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 61(49): 19857-19869, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36454194

RESUMO

Metallothioneins (MTs) are a ubiquitous class of small cysteine-rich metal-binding proteins involved in metal homeostasis and detoxification with highly versatile metal binding properties. Despite the long-standing association of MT with M3S3 and M4S5 metal clusters, synthetic complexes with these core architectures are exceptionally rare. Here, we demonstrate an approach to synthesizing and characterizing aggregates of group 12 metal ions with monocyclic M3S3 cores in acetonitrile solution without the protection of a protein. Multidentate monothiol ligand N,N-bis(2-pyridylmethyl)-2-aminoethanethiol (L1H) provided [Cd3(L1)3](ClO4)3 (1), the first structurally characterized nonproteinaceous aggregate with a metallothionein-like monocyclic Cd3S3 core. In addition, [Zn3(L1)3](ClO4)3·4CH3CN (2·4CH3CN) was characterized by X-ray crystallography. The complex cations of 1 and 2 had comparable structures despite being nonisomorphic. Variable temperature and concentration 1H NMR were used to investigate aggregation equilibria of 1, 2, and a precipitate with composition "Hg(L1)(ClO4)" (3). Cryogenic 1H NMR studies of 3 revealed a J(199Hg1H) coupling constant pattern consistent with an aggregate possessing a cyclic core. ESI-MS was used for gas-phase characterization of 1-3, as well as mixed-metal [M2M'(L1)3(ClO4)2]+ ions prepared in situ by pairwise acetonitrile solution combinations of the group 12 complexes of L1. Access to synthetic variants of metallothionein-like group 12 aggregates provides an additional approach to understanding their behavior.


Assuntos
Mercúrio , Metalotioneína , Metalotioneína/química , Cádmio/química , Espectroscopia de Ressonância Magnética , Metais/metabolismo , Cristalografia por Raios X
2.
Acta Crystallogr D Struct Biol ; 74(Pt 10): 986-999, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30289409

RESUMO

Crystal harvesting has proven to be difficult to automate and remains the rate-limiting step for many structure-determination and high-throughput screening projects. This has resulted in crystals being prepared more rapidly than they can be harvested for X-ray data collection. Fourth-generation synchrotrons will support extraordinarily rapid rates of data acquisition, putting further pressure on the crystal-harvesting bottleneck. Here, a simple solution is reported in which crystals can be acoustically harvested from slightly modified MiTeGen In Situ-1 crystallization plates. This technique uses an acoustic pulse to eject each crystal out of its crystallization well, through a short air column and onto a micro-mesh (improving on previous work, which required separately grown crystals to be transferred before harvesting). Crystals can be individually harvested or can be serially combined with a chemical library such as a fragment library.


Assuntos
Acústica , Cristalização/métodos , Manejo de Espécimes/métodos , Cristalização/instrumentação , Desenho de Equipamento , Proteínas/química , Bibliotecas de Moléculas Pequenas , Manejo de Espécimes/instrumentação , Síncrotrons , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA