Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
PLoS One ; 18(12): e0294202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38134188

RESUMO

We performed two cross-sectional surveys across three informal settlements in Kenya (within Kisii county, Nairobi, and Nakuru county) to study the effectiveness of public health interventions during the COVID-19 pandemic. A total of 720 participants were surveyed from 120 randomly selected geographical locations (240 participants/settlement/survey), and a coordinated health promotion campaign was delivered between the two surveys by trained staff. Information relating to knowledge, attitudes, and practices (KAP) were collected by trained field workers using a validated questionnaire. The main outcomes showed improvements in: (i) mask-wearing (% of participants 'Always' using their mask increased from 71 to 74%, and the percentage using their masks 'Sometimes' decreased from 15% to 6%; p<0.001); (ii) practices related to face mask usage (% of subjects covering the mouth and nose increased from 91 to 95%, and those covering only part of their face decreased from around 2.5% to <1%; p<0.001). Significant improvements were also seen in the attitudes and expectations relating to mask wearing, and in the understanding of government directives. Over 50% of subjects in the post-campaign survey reported that social distancing was not possible in their communities and fears associated with COVID-19 testing were resistant to change (unchanged at 10%). Access to COVID-19 testing facilities was limited, leaving a large proportion of people unable to test. As willingness to take a COVID-19 test did not change between surveys (69 vs 70%; p = 0.57), despite increased availability, we recommend that policy level interventions are needed, aimed at mitigating adverse consequences of a positive test. Improvements of KAPs in the more crowded urban environment (Nairobi) were less than at settlements in rural or semi-urban settings (Nakuru and Kisii). We conclude that coordinated public health campaigns are effective in facilitating the change of KAPs amongst people living amidst challenging socio-economic conditions in informal settlements.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Quênia/epidemiologia , Estudos Transversais , Pandemias/prevenção & controle , Teste para COVID-19 , Conhecimentos, Atitudes e Prática em Saúde , Promoção da Saúde
2.
Oncogene ; 42(9): 679-692, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599922

RESUMO

Breast cancer stem cells (BCSC) are presumed to be responsible for treatment resistance, tumor recurrence and metastasis of breast tumors. However, development of BCSC-targeting therapies has been held back by their heterogeneity and the lack of BCSC-selective molecular targets. Here, we demonstrate that RAC1B, the only known alternatively spliced variant of the small GTPase RAC1, is expressed in a subset of BCSCs in vivo and its function is required for the maintenance of BCSCs and their chemoresistance to doxorubicin. In human breast cancer cell line MCF7, RAC1B is required for BCSC plasticity and chemoresistance to doxorubicin in vitro and for tumor-initiating abilities in vivo. Unlike Rac1, Rac1b function is dispensable for normal mammary gland development and mammary epithelial stem cell (MaSC) activity. In contrast, loss of Rac1b function in a mouse model of breast cancer hampers the BCSC activity and increases their chemosensitivity to doxorubicin treatment. Collectively, our data suggest that RAC1B is a clinically relevant molecular target for the development of BCSC-targeting therapies that may improve the effectiveness of doxorubicin-mediated chemotherapy.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Mamárias Animais/patologia , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia
3.
Cell Death Differ ; 29(11): 2262-2274, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35585181

RESUMO

Apoptosis is regulated by interactions between the BH3-only and multi-domain Bcl-2 family proteins. These interactions are integrated on the outer mitochondrial membrane (OMM) where they set the threshold for apoptosis, known as mitochondrial priming. However, how mitochondrial priming is controlled at the level of single cells remains unclear. Retrotranslocation of Bcl-XL has been proposed as one mechanism, removing pro-apoptotic Bcl-2 proteins from the OMM, thus reducing priming. Contrary to this view, we now show that Bcl-XL retrotranslocation is inhibited by binding to its BH3-only partners, resulting in accumulation of these protein complexes on mitochondria. We find that Bcl-XL retrotranslocation dynamics are tightly coupled to mitochondrial priming. Quantifying these dynamics indicates the heterogeneity in priming between cells within a population and predicts how they subsequently respond to a pro-apoptotic signal.


Assuntos
Mitocôndrias , Proteínas Proto-Oncogênicas c-bcl-2 , Citosol/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Proteína bcl-X/metabolismo , Proteína X Associada a bcl-2/metabolismo
4.
Oncogene ; 41(7): 1040-1049, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34916592

RESUMO

Ectodysplasin A receptor (EDAR) is a death receptor in the Tumour Necrosis Factor Receptor (TNFR) superfamily with roles in the development of hair follicles, teeth and cutaneous glands. Here we report that human Oestrogen Receptor (ER) negative breast carcinomas which display squamous differentiation express EDAR strongly. Using a mouse model with a high Edar copy number, we show that elevated EDAR signalling results in a high incidence of mammary tumours in breeding female mice. These tumours resemble the EDAR-high human tumours in that they are characterised by a lack of oestrogen receptor expression, contain extensive squamous metaplasia, and display strong ß-catenin transcriptional activity. In the mouse model, all of the tumours carry somatic deletions of the third exon of the CTNNB1 gene that encodes ß-catenin. Deletion of this exon yields unconstrained ß-catenin signalling activity. We also demonstrate that ß-catenin activity is required for transformed cell growth, showing that increased EDAR signalling creates an environment in which ß-catenin activity can readily promote tumourigenesis. Together, this work identifies a novel death receptor oncogene in breast cancer, whose mechanism of transformation is based on the interaction between the WNT and Ectodysplasin A (EDA) pathways.


Assuntos
Receptores da Ectodisplasina
5.
Front Cell Dev Biol ; 9: 692173, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295896

RESUMO

The Notch signalling pathway is a highly conserved developmental signalling pathway, with vital roles in determining cell fate during embryonic development and tissue homeostasis. Aberrant Notch signalling has been implicated in many disease pathologies, including cancer. In this review, we will outline the mechanism and regulation of the Notch signalling pathway. We will also outline the role Notch signalling plays in normal mammary gland development and how Notch signalling is implicated in breast cancer tumorigenesis and progression. We will cover how Notch signalling controls several different hallmarks of cancer within epithelial cells with sections focussed on its roles in proliferation, apoptosis, invasion, and metastasis. We will provide evidence for Notch signalling in the breast cancer stem cell phenotype, which also has implications for therapy resistance and disease relapse in breast cancer patients. Finally, we will summarise the developments in therapeutic targeting of Notch signalling, and the pros and cons of this approach for the treatment of breast cancer.

6.
Curr Biol ; 31(15): 3409-3418.e6, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34111402

RESUMO

Epithelial tissues are highly sensitive to anisotropies in mechanical force, with cells altering fundamental behaviors, such as cell adhesion, migration, and cell division.1-5 It is well known that, in the later stages of carcinoma (epithelial cancer), the presence of tumors alters the mechanical properties of a host tissue and that these changes contribute to disease progression.6-9 However, in the earliest stages of carcinoma, when a clonal cluster of oncogene-expressing cells first establishes in the epithelium, the extent to which mechanical changes alter cell behavior in the tissue as a whole remains unclear. This is despite knowledge that many common oncogenes, such as oncogenic Ras, alter cell stiffness and contractility.10-13 Here, we investigate how mechanical changes at the cellular level of an oncogenic cluster can translate into the generation of anisotropic strain across an epithelium, altering cell behavior in neighboring host tissue. We generated clusters of oncogene-expressing cells within otherwise normal in vivo epithelium, using Xenopus laevis embryos. We find that cells in kRasV12, but not cMYC, clusters have increased contractility, which introduces radial stress in the tissue and deforms surrounding host cells. The strain imposed by kRasV12 clusters leads to increased cell division and altered division orientation in neighboring host tissue, effects that can be rescued by reducing actomyosin contractility specifically in the kRasV12 cells. Our findings indicate that some oncogenes can alter the mechanical and proliferative properties of host tissue from the earliest stages of cancer development, changes that have the potential to contribute to tumorigenesis.


Assuntos
Divisão Celular , Neoplasias , Oncogenes , Proteínas Proto-Oncogênicas p21(ras) , Animais , Anisotropia , Carcinogênese/genética , Neoplasias/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Xenopus laevis
7.
Sci Rep ; 11(1): 9096, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907274

RESUMO

Notch and Wnt are two essential signalling pathways that help to shape animals during development and to sustain adult tissue homeostasis. Although they are often active at the same time within a tissue, they typically have opposing effects on cell fate decisions. In fact, crosstalk between the two pathways is important in generating the great diversity of cell types that we find in metazoans. Several different mechanisms have been proposed that allow Notch to limit Wnt signalling, driving a Notch-ON/Wnt-OFF state. Here we explore these different mechanisms in human cells and demonstrate two distinct mechanisms by which Notch itself, can limit the transcriptional activity of ß-catenin. At the membrane, independently of DSL ligands, Notch1 can antagonise ß-catenin activity through an endocytic mechanism that requires its interaction with Deltex and sequesters ß-catenin into the membrane fraction. Within the nucleus, the intracellular domain of Notch1 can also limit ß-catenin induced transcription through the formation of a complex that requires its interaction with RBPjκ. We believe these mechanisms contribute to the robustness of cell-fate decisions by sharpening the distinction between opposing Notch/Wnt responses.


Assuntos
Receptores Notch/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Núcleo Celular/metabolismo , Células HCT116 , Células HEK293 , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores Notch/genética , Transcrição Gênica , beta Catenina/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
8.
Cancer Res ; 81(4): 847-859, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33509944

RESUMO

Triple-negative breast cancers (TNBC) are resistant to standard-of-care chemotherapy and lack known targetable driver gene alterations. Identification of novel drivers could aid the discovery of new treatment strategies for this hard-to-treat patient population, yet studies using high-throughput and accurate models to define the functions of driver genes in TNBC to date have been limited. Here, we employed unbiased functional genomics screening of the 200 most frequently mutated genes in breast cancer, using spheroid cultures to model in vivo-like conditions, and identified the histone acetyltransferase CREBBP as a novel tumor suppressor in TNBC. CREBBP protein expression in patient tumor samples was absent in 8% of TNBCs and at a high frequency in other tumors, including squamous lung cancer, where CREBBP-inactivating mutations are common. In TNBC, CREBBP alterations were associated with higher genomic heterogeneity and poorer patient survival and resulted in upregulation and dependency on a FOXM1 proliferative program. Targeting FOXM1-driven proliferation indirectly with clinical CDK4/6 inhibitors (CDK4/6i) selectively impaired growth in spheroids, cell line xenografts, and patient-derived models from multiple tumor types with CREBBP mutations or loss of protein expression. In conclusion, we have identified CREBBP as a novel driver in aggressive TNBC and identified an associated genetic vulnerability in tumor cells with alterations in CREBBP and provide a preclinical rationale for assessing CREBBP alterations as a biomarker of CDK4/6i response in a new patient population. SIGNIFICANCE: This study demonstrates that CREBBP genomic alterations drive aggressive TNBC, lung cancer, and lymphomas and may be selectively treated with clinical CDK4/6 inhibitors.


Assuntos
Proteína de Ligação a CREB/fisiologia , Carcinogênese/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Animais , Proteína de Ligação a CREB/genética , Proliferação de Células/genética , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Genômica/métodos , Células HCT116 , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Terapia de Alvo Molecular , Mutação , Invasividade Neoplásica , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cell Death Dis ; 11(10): 872, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067418

RESUMO

Apoptotic priming controls the commitment of cells to apoptosis by determining how close they lie to mitochondrial permeabilisation. Variations in priming are important for how both healthy and cancer cells respond to chemotherapeutic agents, but how it is dynamically coordinated by Bcl-2 proteins remains unclear. The Bcl-2 family protein Bid is phosphorylated when cells enter mitosis, increasing apoptotic priming and sensitivity to antimitotic drugs. Here, we report an unbiased proximity biotinylation (BioID) screen to identify regulators of apoptotic priming in mitosis, using Bid as bait. The screen primarily identified proteins outside of the canonical Bid interactome. Specifically, we found that voltage-dependent anion-selective channel protein 2 (VDAC2) was required for Bid phosphorylation-dependent changes in apoptotic priming during mitosis. These results highlight the importance of the wider Bcl-2 family interactome in regulating the temporal control of apoptotic priming.


Assuntos
Apoptose/fisiologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Ciclo Celular/fisiologia , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Biotinilação/métodos , Humanos , Mitocôndrias/metabolismo , Proteômica/métodos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
10.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630604

RESUMO

Vascular calcification describes the formation of mineralized tissue within the blood vessel wall, and it is highly associated with increased cardiovascular morbidity and mortality in patients with chronic kidney disease, diabetes, and atherosclerosis. In this article, we briefly review different rodent models used to study vascular calcification in vivo, and critically assess the strengths and weaknesses of the current techniques used to analyze and quantify calcification in these models, namely 2-D histology and the o-cresolphthalein assay. In light of this, we examine X-ray micro-computed tomography (µCT) as an emerging complementary tool for the analysis of vascular calcification in animal models. We demonstrate that this non-destructive technique allows us to simultaneously quantify and localize calcification in an intact vessel in 3-D, and we consider recent advances in µCT sample preparation techniques. This review also discusses the potential to combine 3-D µCT analyses with subsequent 2-D histological, immunohistochemical, and proteomic approaches in correlative microscopy workflows to obtain rich, multifaceted information on calcification volume, calcification load, and signaling mechanisms from within the same arterial segment. In conclusion we briefly discuss the potential use of µCT to visualize and measure vascular calcification in vivo in real-time.


Assuntos
Calcificação Vascular/patologia , Microtomografia por Raio-X/métodos , Microtomografia por Raio-X/tendências , Animais , Aterosclerose/patologia , Humanos , Imageamento Tridimensional/métodos , Microscopia/métodos , Modelos Animais , Proteômica , Insuficiência Renal Crônica/patologia , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/metabolismo
11.
Breast Cancer Res ; 20(1): 128, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30348189

RESUMO

BACKGROUND: Stem cells are precursors for all mammary epithelia, including ductal and alveolar epithelia, and myoepithelial cells. In vivo mammary epithelia reside in a tissue context and interact with their milieu via receptors such as integrins. Extracellular matrix receptors coordinate important cellular signalling platforms, of which integrins are the central architects. We have previously shown that integrins are required for mammary epithelial development and function, including survival, cell cycle, and polarity, as well as for the expression of mammary-specific genes. In the present study we looked at the role of integrins in mammary epithelial stem cell self-renewal. METHODS: We used an in vitro stem cell assay with primary mouse mammary epithelial cells isolated from genetically altered mice. This involved a 3D organoid assay, providing an opportunity to distinguish the stem cell- or luminal progenitor-driven organoids as structures with solid or hollow appearances, respectively. RESULTS: We demonstrate that integrins are essential for the maintenance and self-renewal of mammary epithelial stem cells. Moreover integrins activate the Rac1 signalling pathway in stem cells, which leads to the stimulation of a Wnt pathway, resulting in expression of ß-catenin target genes such as Axin2 and Lef1. CONCLUSIONS: Integrin/Rac signalling has a role in specifying the activation of a canonical Wnt pathway that is required for mammary epithelial stem cell self-renewal.


Assuntos
Autorrenovação Celular/fisiologia , Células Epiteliais/fisiologia , Integrinas/metabolismo , Neuropeptídeos/metabolismo , Células-Tronco/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Epitélio/fisiologia , Feminino , Integrinas/genética , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/fisiologia , Camundongos , Camundongos Knockout , Neuropeptídeos/genética , Organoides/fisiologia , Cultura Primária de Células/métodos , Transdução de Sinais/fisiologia , Proteínas rac1 de Ligação ao GTP/genética
12.
Sci Rep ; 8(1): 8981, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895825

RESUMO

The mechanical environment can influence cell behaviour, including changes to transcriptional and proteomic regulation, morphology and, in the case of stem cells, commitment to lineage. However, current tools for characterizing substrates' mechanical properties, such as atomic force microscopy (AFM), often do not fully recapitulate the length and time scales over which cells 'feel' substrates. Here, we show that an immortalised, clonal line of human mesenchymal stem cells (MSCs) maintains the responsiveness to substrate mechanics observed in primary cells, and can be used as a reporter of stiffness. MSCs were cultured on soft and stiff polyacrylamide hydrogels. In both primary and immortalised MSCs, stiffer substrates promoted increased cell spreading, expression of lamin-A/C and translocation of mechano-sensitive proteins YAP1 and MKL1 to the nucleus. Stiffness was also found to regulate transcriptional markers of lineage. A GFP-YAP/RFP-H2B reporter construct was designed and virally delivered to the immortalised MSCs for in situ detection of substrate stiffness. MSCs with stable expression of the reporter showed GFP-YAP to be colocalised with nuclear RFP-H2B on stiff substrates, enabling development of a cellular reporter of substrate stiffness. This will facilitate mechanical characterisation of new materials developed for applications in tissue engineering and regenerative medicine.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Mecanotransdução Celular , Células-Tronco Mesenquimais/metabolismo , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Transformada , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/ultraestrutura , Microscopia de Força Atômica , Pessoa de Meia-Idade
13.
Eur J Cell Biol ; 96(3): 227-239, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28363396

RESUMO

Epithelial cells forming mammary gland ducts and alveoli require adhesion to the extracellular matrix for their function. Mammary epithelial cells need ß1-integrins for normal cell cycle regulation. However, the role of ß1-integrins in tumorigenesis has not been fully resolved. ß1-integrin is necessary for tumour formation in transgenic mice expressing the Polyomavirus Middle T antigen, but it is dispensable in those overexpressing ErbB2. This suggests that some oncogenes can manage without ß1-integrin to proliferate and form tumours, while others still require it. Here we have developed a model to test whether expression of an oncogene can surpass the need for ß1-integrin to drive proliferation. We co-expressed the ErbB2 or Akt oncogenes with shRNA to target ß1-integrin in mammary epithelial cells, and found that they show a differential dependence on ß1-integrin for cell division. Moreover, we identified a key proliferative role of the Rac1-Pak axis downstream of ß1-integrin signalling. Our data suggest that, in mammary epithelial cells, oncogenes with the ability to signal to Pak surpass the requirement of integrins for malignant transformation. This highlights the importance of using the correct combination therapy for breast cancer, depending on the oncogenes expressed in the tumour.


Assuntos
Neoplasias da Mama/metabolismo , Proliferação de Células , Células Epiteliais/metabolismo , Cadeias beta de Integrinas/metabolismo , Glândulas Mamárias Humanas/citologia , Animais , Neoplasias da Mama/patologia , Divisão Celular , Linhagem Celular , Transformação Celular Neoplásica , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Feminino , Humanos , Cadeias beta de Integrinas/genética , Glândulas Mamárias Humanas/metabolismo , Camundongos , Neuropeptídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Transdução de Sinais , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
14.
PLoS Comput Biol ; 13(2): e1005400, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28245235

RESUMO

The Notch pathway plays a vital role in determining whether cells in the intestinal epithelium adopt a secretory or an absorptive phenotype. Cell fate specification is coordinated via Notch's interaction with the canonical Wnt pathway. Here, we propose a new mathematical model of the Notch and Wnt pathways, in which the Hes1 promoter acts as a hub for pathway crosstalk. Computational simulations of the model can assist in understanding how healthy intestinal tissue is maintained, and predict the likely consequences of biochemical knockouts upon cell fate selection processes. Chemical reaction network theory (CRNT) is a powerful, generalised framework which assesses the capacity of our model for monostability or multistability, by analysing properties of the underlying network structure without recourse to specific parameter values or functional forms for reaction rates. CRNT highlights the role of ß-catenin in stabilising the Notch pathway and damping oscillations, demonstrating that Wnt-mediated actions on the Hes1 promoter can induce dynamic transitions in the Notch system, from multistability to monostability. Time-dependent model simulations of cell pairs reveal the stabilising influence of Wnt upon the Notch pathway, in which ß-catenin- and Dsh-mediated action on the Hes1 promoter are key in shaping the subcellular dynamics. Where Notch-mediated transcription of Hes1 dominates, there is Notch oscillation and maintenance of fate flexibility; Wnt-mediated transcription of Hes1 favours bistability akin to cell fate selection. Cells could therefore regulate the proportion of Wnt- and Notch-mediated control of the Hes1 promoter to coordinate the timing of cell fate selection as they migrate through the intestinal epithelium and are subject to reduced Wnt stimuli. Furthermore, mutant cells characterised by hyperstimulation of the Wnt pathway may, through coupling with Notch, invert cell fate in neighbouring healthy cells, enabling an aberrant cell to maintain its neighbours in mitotically active states.


Assuntos
Mucosa Intestinal/metabolismo , Modelos Biológicos , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição HES-1/metabolismo , Via de Sinalização Wnt/fisiologia , Relógios Biológicos/fisiologia , Células Cultivadas , Simulação por Computador , Humanos , Receptor Cross-Talk/fisiologia
15.
Oncotarget ; 7(43): 70336-70352, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27611942

RESUMO

A key hallmark of cancer cells is the loss of positional control over growth and survival. Focal adhesion kinase (FAK) is a tyrosine kinase localised at sites of integrin-mediated cell adhesion to the extracellular matrix. FAK controls a number of adhesion-dependent cellular functions, including migration, proliferation and survival. Although FAK is overexpressed and activated in metastatic tumours, where it promotes invasion, it can also be elevated in cancers that have yet to become invasive. The contribution of FAK to the early stages of tumourigenesis is not known. We have examined the effect of activating FAK in non-transformed mammary epithelial cells (MECs) to understand its role in tumour initiation. In agreement with previous studies, we find FAK activation in 2D-culture promotes proliferation, migration, and epithelial-to-mesenchymal transition. However in 3D-cultures that better resemble normal tissue morphology, mammary cells largely respond to FAK activation via suppression of apoptosis, promoting aberrant acinar morphogenesis. This is an acquired function of FAK, because endogenous FAK signalling is not required for normal morphogenesis in 3D-culture or in vivo. Thus, FAK activation may facilitate tumour initiation by causing resistance to apoptosis. We suggest that aberrant FAK activation in breast epithelia is dependent upon the tissue context in which it occurs.


Assuntos
Apoptose , Neoplasias da Mama/etiologia , Quinase 1 de Adesão Focal/fisiologia , Animais , Mama/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Transição Epitelial-Mesenquimal , Feminino , Quinase 1 de Adesão Focal/antagonistas & inibidores , Humanos , Hiperplasia , Camundongos
16.
J Pathol ; 240(3): 315-328, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27512948

RESUMO

The initiation and progression of breast cancer from the transformation of the normal epithelium to ductal carcinoma in situ (DCIS) and invasive disease is a complex process involving the acquisition of genetic alterations and changes in gene expression, alongside microenvironmental and recognized histological alterations. Here, we sought to comprehensively characterise the genomic and transcriptomic features of the MCF10 isogenic model of breast cancer progression, and to functionally validate potential driver alterations in three-dimensional (3D) spheroids that may provide insights into breast cancer progression, and identify targetable alterations in conditions more similar to those encountered in vivo. We performed whole genome, exome and RNA sequencing of the MCF10 progression series to catalogue the copy number and mutational and transcriptomic landscapes associated with progression. We identified a number of predicted driver mutations (including PIK3CA and TP53) that were acquired during transformation of non-malignant MCF10A cells to their malignant counterparts that are also present in analysed primary breast cancers from The Cancer Genome Atlas (TCGA). Acquisition of genomic alterations identified MYC amplification and previously undescribed RAB3GAP1-HRAS and UBA2-PDCD2L expressed in-frame fusion genes in malignant cells. Comparison of pathway aberrations associated with progression showed that, when cells are grown as 3D spheroids, they show perturbations of cancer-relevant pathways. Functional interrogation of the dependency on predicted driver events identified alterations in HRAS, PIK3CA and TP53 that selectively decreased cell growth and were associated with progression from preinvasive to invasive disease only when cells were grown as spheroids. Our results have identified changes in the genomic repertoire in cell lines representative of the stages of breast cancer progression, and demonstrate that genetic dependencies can be uncovered when cells are grown in conditions more like those in vivo. The MCF10 progression series therefore represents a good model with which to dissect potential biomarkers and to evaluate therapeutic targets involved in the progression of breast cancer. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Modelos Biológicos , Fosfatidilinositol 3-Quinases/genética , Transcriptoma , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Classe I de Fosfatidilinositol 3-Quinases , DNA de Neoplasias/química , DNA de Neoplasias/genética , Progressão da Doença , Exoma/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Análise de Sequência de DNA , Esferoides Celulares , Proteína Supressora de Tumor p53/genética
17.
J Cell Physiol ; 231(11): 2408-17, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27019299

RESUMO

Epithelial cell adhesion to the surrounding extracellular matrix is necessary for their proper behavior and function. During pregnancy and lactation, mammary epithelial cells (MECs) receive signals from their interaction with laminin via ß1-integrin (ß1-itg) to establish apico-basal polarity and to differentiate in response to prolactin. Downstream of ß1-itg, the scaffold protein Integrin Linked Kinase (ILK) has been identified as the key signal transducer that is required for both lactational differentiation and the establishment of apico-basal polarity. ILK is an adaptor protein that forms the IPP complex with PINCH and Parvins, which are central to its adaptor functions. However, it is not known how ILK and its interacting partners control tissue-specific gene expression. Expression of ILK mutants, which weaken the interaction between ILK and Parvin, revealed that Parvins have a role in mammary epithelial differentiation. This conclusion was supported by shRNA-mediated knockdown of the Parvins. In addition, shRNA knockdown of the Parvin-binding guanine nucleotide exchange factor αPix prevented prolactin-induced differentiation. αPix depletion did not disrupt focal adhesions, MEC proliferation, or polarity. This suggests that αPix represents a differentiation-specific bifurcation point in ß1-itg-ILK adhesive signaling. In summary, this study has identified a new role for Parvin and αPix downstream of the integrin-ILK signaling axis for MEC differentiation. J. Cell. Physiol. 231: 2408-2417, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Diferenciação Celular , Células Epiteliais/citologia , Integrina beta1/metabolismo , Glândulas Mamárias Animais/citologia , Proteínas dos Microfilamentos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Camundongos , Mutação/genética , Prolactina/farmacologia , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
18.
Stem Cells Int ; 2016: 2498764, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26880941

RESUMO

Over the past decade, there has been growing interest in the Notch signalling pathway within the breast cancer field. This interest stemmed initially from the observation that Notch signalling is aberrantly activated in breast cancer and its effects on various cellular processes including proliferation, apoptosis, and cancer stem cell activity. However more recently, elevated Notch signalling has been correlated with therapy resistance in oestrogen receptor-positive breast cancer. As a result, inhibiting Notch signalling with therapeutic agents is being explored as a promising treatment option for breast cancer patients.

19.
Breast Cancer Res ; 18(1): 5, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26747277

RESUMO

BACKGROUND: High mammographic density is a therapeutically modifiable risk factor for breast cancer. Although mammographic density is correlated with the relative abundance of collagen-rich fibroglandular tissue, the causative mechanisms, associated structural remodelling and mechanical consequences remain poorly defined. In this study we have developed a new collaborative bedside-to-bench workflow to determine the relationship between mammographic density, collagen abundance and alignment, tissue stiffness and the expression of extracellular matrix organising proteins. METHODS: Mammographic density was assessed in 22 post-menopausal women (aged 54-66 y). A radiologist and a pathologist identified and excised regions of elevated non-cancerous X-ray density prior to laboratory characterization. Collagen abundance was determined by both Masson's trichrome and Picrosirius red staining (which enhances collagen birefringence when viewed under polarised light). The structural specificity of these collagen visualisation methods was determined by comparing the relative birefringence and ultrastructure (visualised by atomic force microscopy) of unaligned collagen I fibrils in reconstituted gels with the highly aligned collagen fibrils in rat tail tendon. Localised collagen fibril organisation and stiffness was also evaluated in tissue sections by atomic force microscopy/spectroscopy and the abundance of key extracellular proteins was assessed using mass spectrometry. RESULTS: Mammographic density was positively correlated with the abundance of aligned periductal fibrils rather than with the abundance of amorphous collagen. Compared with matched tissue resected from the breasts of low mammographic density patients, the highly birefringent tissue in mammographically dense breasts was both significantly stiffer and characterised by large (>80 µm long) fibrillar collagen bundles. Subsequent proteomic analyses not only confirmed the absence of collagen fibrosis in high mammographic density tissue, but additionally identified the up-regulation of periostin and collagen XVI (regulators of collagen fibril structure and architecture) as potential mediators of localised mechanical stiffness. CONCLUSIONS: These preliminary data suggest that remodelling, and hence stiffening, of the existing stromal collagen microarchitecture promotes high mammographic density within the breast. In turn, this aberrant mechanical environment may trigger neoplasia-associated mechanotransduction pathways within the epithelial cell population.


Assuntos
Neoplasias da Mama/genética , Colágeno/metabolismo , Glândulas Mamárias Humanas/anormalidades , Mamografia/métodos , Proteômica , Idoso , Animais , Densidade da Mama , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Moléculas de Adesão Celular/metabolismo , Colágeno/ultraestrutura , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Microscopia de Força Atômica , Pessoa de Meia-Idade , Ratos , Fatores de Risco
20.
Cell Rep ; 12(12): 1968-77, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26387946

RESUMO

Breast cancers (BCs) typically express estrogen receptors (ERs) but frequently exhibit de novo or acquired resistance to hormonal therapies. Here, we show that short-term treatment with the anti-estrogens tamoxifen or fulvestrant decrease cell proliferation but increase BC stem cell (BCSC) activity through JAG1-NOTCH4 receptor activation both in patient-derived samples and xenograft (PDX) tumors. In support of this mechanism, we demonstrate that high ALDH1 predicts resistance in women treated with tamoxifen and that a NOTCH4/HES/HEY gene signature predicts for a poor response/prognosis in 2 ER+ patient cohorts. Targeting of NOTCH4 reverses the increase in Notch and BCSC activity induced by anti-estrogens. Importantly, in PDX tumors with acquired tamoxifen resistance, NOTCH4 inhibition reduced BCSC activity. Thus, we establish that BCSC and NOTCH4 activities predict both de novo and acquired tamoxifen resistance and that combining endocrine therapy with targeting JAG1-NOTCH4 overcomes resistance in human breast cancers.


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/genética , Proteínas de Ligação ao Cálcio/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Notch/metabolismo , Família Aldeído Desidrogenase 1 , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Benzazepinas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Estradiol/análogos & derivados , Estradiol/farmacologia , Antagonistas do Receptor de Estrogênio/farmacologia , Feminino , Fulvestranto , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Proteína Jagged-1 , Proteínas de Membrana/genética , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Receptor Notch4 , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores Notch/antagonistas & inibidores , Receptores Notch/genética , Retinal Desidrogenase/antagonistas & inibidores , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo , Proteínas Serrate-Jagged , Transdução de Sinais , Análise de Sobrevida , Tamoxifeno/farmacologia , Fatores de Transcrição HES-1 , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA