Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
NPJ Biofilms Microbiomes ; 9(1): 63, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679355

RESUMO

Bacterial biofilms, which consist of three-dimensional extracellular polymeric substance (EPS), not only function as signaling networks, provide nutritional support, and facilitate surface adhesion, but also serve as a protective shield for the residing bacterial inhabitants against external stress, such as antibiotics, antimicrobials, and host immune responses. Biofilm-associated infections account for 65-80% of all human microbial infections that lead to serious mortality and morbidity. Tremendous effort has been spent to address the problem by developing biofilm-dispersing agents to discharge colonized microbial cells to a more vulnerable planktonic state. Here, we discuss the recent progress of enzymatic eradicating strategies against medical biofilms, with a focus on dispersal mechanisms. Particularly, we review three enzyme classes that have been extensively investigated, namely glycoside hydrolases, proteases, and deoxyribonucleases.


Assuntos
Biofilmes , Matriz Extracelular de Substâncias Poliméricas , Humanos , Antibacterianos , Plâncton , Transdução de Sinais
2.
FEBS J ; 290(4): 1049-1059, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36083143

RESUMO

Bacterial biofilms consist of bacterial cells embedded within a self-produced extracellular polymeric substance (EPS) composed of exopolysaccharides, extra cellular DNA, proteins and lipids. The enzyme Dispersin B (DspB) is a CAZy type 20 ß-hexosaminidase enzyme that catalyses the hydrolysis of poly-N-acetylglucosamine (PNAG), a major biofilm polysaccharide produced by a wide variety of biofilm-forming bacteria. Native PNAG is partially de-N-acetylated, and the degree of deacetylation varies between species and dependent on the environment. We have previously shown that DspB is able to perform both endo- and exo-glycosidic bond cleavage of PNAG depending on the de-N-acetylation patterns present in the PNAG substrate. Here, we used a combination of synthetic PNAG substrate analogues, site-directed mutagenesis and in vitro biofilm dispersal assay to investigate the molecular basis for the endo-glycosidic cleavage activity of DspB and the importance of this activity for dispersal of PNAG-dependent Staphylococcus epidermidis biofilms. We found that D242 contributes to the endoglycosidase activity of DspB through electrostatic interactions with cationic substrates in the -2 binding site. A DspBD242N mutant was highly deficient in endoglycosidase activity while maintaining exoglycosidase activity. When used to disperse S. epidermidis biofilms, this DspBD242N mutant resulted in an increase in residual biofilm biomass after treatment when compared to wild-type DspB. These results suggest that the de-N-acetylation of PNAG in S. epidermidis biofilms is not uniformly distributed and that the endoglycosidase activity of DspB is required for efficient biofilm dispersal.


Assuntos
Acetilglucosamina , Glicosídeo Hidrolases , Glicosídeo Hidrolases/química , Proteínas de Bactérias/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Eletricidade Estática , Staphylococcus epidermidis/metabolismo , Biofilmes
3.
Bioorg Chem ; 119: 105532, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34883361

RESUMO

Microbial polysaccharides composed of N-acetylglucosamine (GlcNAc), such as chitin, peptidoglycan and poly-ß-(1 â†’ 6)-GlcNAc (dPNAG), play a critical role in maintaining cell integrity or in facilitating biofilm formation in numerous fungal and bacterial pathogens. Glycosyl hydrolase enzymes that catalyze the degradation of these ß-GlcNAc containing polysaccharides play important roles in normal microbial cell physiology and can also be exploited as biocatalysts with applications as anti-fungal, anti-bacterial, or biofilm dispersal agents. Assays to rapidly detect and characterize the activity of such glycosyl hydrolase enzymes can facilitate their development as biocatalyst, however, currently available probes such as 4-methylumbelliferyl-ß-GlcNAc (4MU-GlcNAc) are not universally accepted as substrates, and their fluorescent signal is sensitive to changes in pH. Here, we present the development of a new multifunctional fluorescent substrate analog for the detection and characterization of hexosaminidase enzyme activity containing a 7-amino-4-methyl coumarin (AMC) carbamate aglycone. This probe is widely tolerated as a substrate for exo-acting ß-hexosaminidase, family 19 endo-chitinase, and the dPNAG hydrolase enzyme Dispersin B (DspB) and enables detection of hexosaminidase enzyme activity via either single wavelength fluorescent measurements or ratiometric fluorescent detection. We demonstrate the utility of this probe to screen for recombinant DspB activity in Escherichia coli cell lysates, and for the development of a high-throughput assay to screen for DspB inhibitors.


Assuntos
Cumarínicos/química , Corantes Fluorescentes/química , Hexosaminidases/análise , Cumarínicos/síntese química , Relação Dose-Resposta a Droga , Escherichia coli/enzimologia , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/metabolismo , Corantes Fluorescentes/síntese química , Hexosaminidases/metabolismo , Ensaios de Triagem em Larga Escala , Estrutura Molecular , Relação Estrutura-Atividade
4.
J Biol Chem ; 296: 100203, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33334876

RESUMO

The exopolysaccharide poly-ß-(1→6)-N-acetylglucosamine (PNAG) is a major structural determinant of bacterial biofilms responsible for persistent and nosocomial infections. The enzymatic dispersal of biofilms by PNAG-hydrolyzing glycosidase enzymes, such as Dispersin B (DspB), is a possible approach to treat biofilm-dependent bacterial infections. The cationic charge resulting from partial de-N-acetylation of native PNAG is critical for PNAG-dependent biofilm formation. We recently demonstrated that DspB has increased catalytic activity on de-N-acetylated PNAG oligosaccharides, but the molecular basis for this increased activity is not known. Here, we analyze the role of anionic amino acids surrounding the catalytic pocket of DspB in PNAG substrate recognition and hydrolysis using a combination of site-directed mutagenesis, activity measurements using synthetic PNAG oligosaccharide analogs, and in vitro biofilm dispersal assays. The results of these studies support a model in which bound PNAG is weakly associated with a shallow anionic groove on the DspB protein surface with recognition driven by interactions with the -1 GlcNAc residue in the catalytic pocket. An increased rate of hydrolysis for cationic PNAG was driven, in part, by interaction with D147 on the anionic surface. Moreover, we identified that a DspB mutant with improved hydrolysis of fully acetylated PNAG oligosaccharides correlates with improved in vitro dispersal of PNAG-dependent Staphylococcus epidermidis biofilms. These results provide insight into the mechanism of substrate recognition by DspB and suggest a method to improve DspB biofilm dispersal activity by mutation of the amino acids within the anionic binding surface.


Assuntos
Aggregatibacter actinomycetemcomitans/metabolismo , Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , beta-Glucanas/metabolismo , Biofilmes , Hidrólise , Modelos Moleculares
5.
Chemistry ; 26(47): 10719-10723, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32589289

RESUMO

Glycosidase enzymes that hydrolyze the biofilm exopolysaccharide poly-ß-(1→6)-N-acetylglucosamine (PNAG) are critical tools to study biofilm and potential therapeutic biofilm dispersal agents. Function-driven metagenomic screening is a powerful approach for the discovery of new glycosidase but requires sensitive assays capable of distinguishing between the desired enzyme and functionally related enzymes. Herein, we report the synthesis of a colorimetric PNAG disaccharide analogue whose hydrolysis by PNAG glycosidases results in production of para-nitroaniline that can be continuously monitored at 410 nm. The assay is specific for enzymes capable of hydrolyzing PNAG and not related ß-hexosaminidase enzymes with alternative glycosidic linkage specificities. This analogue enabled development of a continuous colorimetric assay for detection of PNAG hydrolyzing enzyme activity in crude E. coli cell lysates and suggests that this disaccharide probe will be critical for establishing the functional screening of metagenomic DNA libraries.


Assuntos
Biofilmes , Colorimetria , Glicosídeo Hidrolases/análise , Glicosídeo Hidrolases/metabolismo , Acetilglucosamina/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo
6.
ACS Chem Biol ; 14(9): 1998-2005, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31430121

RESUMO

Exopolysaccharides consisting of partially de-N-acetylated poly-ß-d-(1→6)-N-acetyl-glucosamine (dPNAG) are key structural components of the biofilm extracellular polymeric substance of both Gram-positive and Gram-negative human pathogens. De-N-acetylation is required for the proper assembly and function of dPNAG in biofilm development suggesting that different patterns of deacetylation may be preferentially recognized by proteins that interact with dPNAG, such as Dispersin B (DspB). The enzymatic degradation of dPNAG by the Aggregatibacter actinomycetemcomitans native ß-hexosaminidase enzyme DspB plays a role in biofilm dispersal. To test the role of substrate de-N-acetylation on substrate recognition by DspB, we applied an efficient preactivation-based one-pot glycosylation approach to prepare a panel of dPNAG trisaccharide analogs with defined acetylation patterns. These analogs served as effective DspB substrates, and the rate of hydrolysis was dependent on the specific substrate de-N-acetylation pattern, with glucosamine (GlcN) located +2 from the site of cleavage being preferentially hydrolyzed. The product distributions support a primarily exoglycosidic cleavage activity following a substrate assisted cleavage mechanism, with the exception of substrates containing a nonreducing GlcN that were cleaved endo leading to the exclusive formation of a nonreducing disaccharide product. These observations provide critical insight into the substrate specificity of dPNAG specific glycosidase that can help guide their design as biocatalysts.


Assuntos
Glicosídeo Hidrolases/química , Oligossacarídeos/química , Aggregatibacter actinomycetemcomitans/enzimologia , Biocatálise , Glicosídeo Hidrolases/metabolismo , Hidrólise , Cinética , Oligossacarídeos/síntese química , Oligossacarídeos/metabolismo , Ligação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA