Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Molecules ; 23(12)2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30572590

RESUMO

Alkaline treatment is a common step largely used in the industrial extraction of agar, a phycocolloid obtained from red algae such as Gelidium sesquipedale. The subsequent residue constitutes a poorly valorized by-product. The present study aimed to identify low-molecular-weight compounds in this alkaline waste. A fractionation process was designed in order to obtain the oligosaccharidic fraction from which several glycerol-galactosides were isolated. A combination of electrospray ion (ESI)-mass spectrometry, ¹H-NMR spectroscopy, and glycosidic linkage analyses by GC-MS allowed the identification of floridoside, corresponding to Gal-glycerol, along with oligogalactosides, i.e., (Gal)2⁻4-glycerol, among which α-d-galactopyranosyl-(1→3)-ß-d-galactopyranosylα1-2⁻glycerol and α-d-galactopyranosyl-(1→4)-ß-d-galactopyranosylα1-2⁻glycerol were described for the first time in red algae.


Assuntos
Ágar/química , Galactosídeos/química , Glicerol/química , Rodófitas/química , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética
2.
Photochem Photobiol Sci ; 17(11): 1780-1786, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30167617

RESUMO

We report the preparation of a cellulose fabric bearing derivative protoporphyrin IX units covalently attached to the cellulose backbone of a fabric. Ce(IV) redox system radical polymerization was used to polymerize methacrylic acid (MAA) onto a cotton material and to obtain cotton-g-polyMAA. Attachment of the photosensitizer, a protoporphyrin IX (PpIX) amino derivative, on cotton-g-polyMAA was realized successfully by a classical peptidic covalent link. The modified surfaces were characterized by ATR-FTIR, DRUV, TGA, and SEM methods. Under visible light irradiation, protoporphyrinic cotton showed antibacterial activity against Staphyloccoccus aureus. This concept is very promising in the field of bacterial decontamination (sterile area, hospital equipment, etc.).


Assuntos
Antibacterianos/farmacologia , Celulose/farmacologia , Escherichia coli/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Celulose/síntese química , Celulose/química , Cério/química , Cério/farmacologia , Luz , Testes de Sensibilidade Microbiana , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Protoporfirinas/química , Protoporfirinas/farmacologia , Têxteis
3.
Cell Microbiol ; 20(11): e12871, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29920917

RESUMO

Prostaglandin E2 (PGE2 ) plays a critical role in intestinal mucosal tolerance and barrier integrity. Cyclooxygenase-2 (COX-2)-dependent PGE2 production involves mobilisation of arachidonic acid. Lactobacillus rhamnosus GG (LbGG) is one of the most widely used probiotics reported to colonise the colonic mucosa. LbGG contributes to the protection of the small intestine against radiation injury through the repositioning of mucosal COX-2 expressing cells. However, it is unknown if LbGG modulates PGE2 production in the colonic mucosa under homeostasis and the major cellular elements involved in these processes. Colonic epithelial and CD90+ mesenchymal stromal cells, also known as (myo) fibroblasts (CMFs), are abundant innate immune cells in normal colonic mucosa able to produce PGE2 . Herein, we tested the hypothesis that under colonic mucosal homeostasis, LbGG modulates the eicosanoid pathway resulting in increased PGE2 production in both epithelial and stromal cells. Among the five tested human colonic epithelial cell lines, only exposure of Caco-2 to LbGG for 24 hr led to the mobilisation of arachidonic acid with concomitant increase in the components within the leukotriene and COX-2-dependent PGE2 pathways. By contrast, CMFs isolated from the normal human colonic mucosa responded to LbGG with increased expression of COX-2 and PGE2 in the prostaglandin pathway, but not 5-LO in the leukotriene pathway. Oral gavage of C57BL/6 mice for 5 days with LbGG (5 × 108 Colony-Forming Unit (CFU)/dose) increased COX-2 expression in the colonic mucosa. The majority of cells upregulating COX-2 protein expression were located in the colonic lamina propria and colocalised with α-SMA+ cells corresponding to the CMF phenotype. This process was myeloid differentiation factor-88-dependent, because silencing of myeloid differentiation factor-88 expression in CMFs abrogated LbGG-induced upregulation of COX-2 in culture and in vivo. Taken together, our data suggest that LbGG increases release of COX-2-mediated PGE2 , contributing to the maintenance of mucosal homeostasis in the colon and CMFs are among the major contributors to this process.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Lacticaseibacillus rhamnosus , Fator 88 de Diferenciação Mieloide/metabolismo , Probióticos/farmacologia , Administração Oral , Animais , Araquidonato 5-Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Células CACO-2 , Colo/citologia , Colo/microbiologia , Homeostase , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/genética , Miofibroblastos/metabolismo , Miofibroblastos/microbiologia , Probióticos/administração & dosagem
4.
Antimicrob Agents Chemother ; 60(6): 3445-54, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27001810

RESUMO

Although the use of probiotics based on Bacillus strains to fight off intestinal pathogens and antibiotic-associated diarrhea is widespread, the mechanisms involved in producing their beneficial effects remain unclear. Here, we studied the ability of compounds secreted by the probiotic Bacillus clausii strain O/C to counteract the cytotoxic effects induced by toxins of two pathogens, Clostridium difficile and Bacillus cereus, by evaluating eukaryotic cell viability and expression of selected genes. Coincubation of C. difficile and B. cereus toxic culture supernatants with the B. clausii supernatant completely prevented the damage induced by toxins in Vero and Caco-2 cells. The hemolytic effect of B. cereus was also avoided by the probiotic supernatant. Moreover, in these cells, the expression of rhoB, encoding a Rho GTPase target for C. difficile toxins, was normalized when C. difficile supernatant was pretreated using the B. clausii supernatant. All of the beneficial effects observed with the probiotic were abolished by the serine protease inhibitor phenylmethylsulfonyl fluoride (PMSF). Suspecting the involvement of a secreted protease in this protective effect, a protease was purified from the B. clausii supernatant and identified as a serine protease (M-protease; GenBank accession number Q99405). Experiments on Vero cells demonstrated the antitoxic activity of the purified protease against pathogen supernatants. This is the first report showing the capacity of a protease secreted by probiotic bacteria to inhibit the cytotoxic effects of toxinogenic C. difficile and B. cereus strains. This extracellular compound could be responsible, at least in part, for the protective effects observed for this human probiotic in antibiotic-associated diarrhea.


Assuntos
Bacillus cereus/patogenicidade , Bacillus clausii/metabolismo , Toxinas Bacterianas/toxicidade , Clostridioides difficile/patogenicidade , Probióticos/farmacologia , Subtilisinas/metabolismo , Animais , Células CACO-2 , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Meios de Cultivo Condicionados/farmacologia , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Fluoreto de Fenilmetilsulfonil/farmacologia , Inibidores de Proteases/farmacologia , Subtilisinas/antagonistas & inibidores , Células Vero , Proteína rhoB de Ligação ao GTP/metabolismo
5.
Antonie Van Leeuwenhoek ; 106(4): 693-706, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25090957

RESUMO

Probiotics represent a potential strategy to influence the host's immune system thereby modulating immune response. Lipoteichoic Acid (LTA) is a major immune-stimulating component of Gram-positive cell envelopes. This amphiphilic polymer, anchored in the cytoplasmic membrane by means of its glycolipid component, typically consists of a poly (glycerol-phosphate) chain with D-alanine and/or glycosyl substitutions. LTA is known to stimulate macrophages in vitro, leading to secretion of inflammatory mediators such as Nitric Oxide (NO). This study investigates the structure-activity relationship of purified LTA from three probiotic Bacillus strains (Bacillus cereus CH, Bacillus subtilis CU1 and Bacillus clausii O/C). LTAs were extracted from bacterial cultures and purified. Chemical modification by means of hydrolysis at pH 8.5 was performed to remove D-alanine. The molecular structure of native and modified LTAs was determined by (1)H NMR and GC-MS, and their inflammatory potential investigated by measuring NO production by RAW 264.7 macrophages. Structural analysis revealed several differences between the newly characterized LTAs, mainly relating to their D-alanylation rates and poly (glycerol-phosphate) chain length. We observed induction of NO production by LTAs from B. subtilis and B. clausii, whereas weaker NO production was observed with B. cereus. LTA dealanylation abrogated NO production independently of the glycolipid component, suggesting that immunomodulatory potential depends on D-alanine substitutions. D-alanine may control the spatial configuration of LTAs and their recognition by cell receptors. Knowledge of molecular mechanisms behind the immunomodulatory abilities of probiotics is essential to optimize their use.


Assuntos
Alanina/análise , Alanina/imunologia , Bacillus/química , Lipopolissacarídeos/análise , Lipopolissacarídeos/imunologia , Probióticos/química , Ácidos Teicoicos/análise , Ácidos Teicoicos/imunologia , Animais , Bacillus/imunologia , Linhagem Celular , Cromatografia Gasosa-Espectrometria de Massas , Hidrólise , Fatores Imunológicos/análise , Fatores Imunológicos/química , Fatores Imunológicos/imunologia , Lipopolissacarídeos/química , Macrófagos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Camundongos , Estrutura Molecular , Óxido Nítrico/metabolismo , Relação Estrutura-Atividade , Ácidos Teicoicos/química
6.
J Dairy Res ; 81(1): 16-23, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24168928

RESUMO

We investigated the mucus-binding properties of aggregating and non-aggregating potentially probiotic strains of kefir-isolated Lactobacillus kefiri, using different substrates. All the strains were able to adhere to commercial gastric mucin (MUCIN) and extracted mucus from small intestine (SIM) and colon (CM). The extraction of surface proteins from bacteria using LiCl or NaOH significantly reduced the adhesion of three selected strains (CIDCA 8348, CIDCA 83115 and JCM 5818); although a significant proportion (up to 50%) of S-layer proteins were not completely eliminated after treatments. The surface (S-layer) protein extracts from all the strains of Lb. kefiri were capable of binding to MUCIN, SIM or CM, and no differences were observed among them. The addition of their own surface protein extract increased adhesion of CIDCA 8348 and 83115 to MUCIN and SIM, meanwhile no changes in adhesion were observed for JCM 5818. None of the seven sugars tested had the ability to inhibit the adhesion of whole bacteria to the three mucus extracts. Noteworthy, the degree of bacterial adhesion reached in the presence of their own surface protein (S-layer) extract decreased to basal levels in the presence of some sugars, suggesting an interaction between the added sugar and the surface proteins. In conclusion, the ability of these food-isolated bacteria to adhere to gastrointestinal mucus becomes an essential issue regarding the biotechnological potentiality of Lb. kefiri for the food industry.


Assuntos
Aderência Bacteriana , Mucosa Gástrica/microbiologia , Mucosa Intestinal/microbiologia , Lactobacillus/fisiologia , Muco/microbiologia , Probióticos , Animais , Aderência Bacteriana/efeitos dos fármacos , Colo , Produtos Fermentados do Leite/microbiologia , Hexoses/farmacologia , Intestino Delgado , Proteínas de Membrana/farmacologia , Suínos
7.
Biomacromolecules ; 12(5): 1716-23, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21438501

RESUMO

In the present work, we report on the synthesis of cellulose cotton fibers bearing different types of photosensitizers with the aim to prepare new efficient polymeric materials for antimicrobial applications. Anionic, neutral, and cationic amino porphyrins have been covalently grafted on cotton fabric, without previous chemical modification of the cellulosic support, using a 1,3,5-triazine derivative as the linker. The obtained porphyrin-grafted cotton fabrics were characterized by infrared (ATR-FTIR), diffuse reflectance UV-vis (DRUV) spectroscopies, and thermogravimetric analysis (TGA) to confirm the triazine linkage. Antimicrobial activity of porphyrin-cellulose materials was tested under visible light irradiation against Staphylococcus aureus and Escherichia coli . The results showed excellent activity on the Gram-positive bacterium, showing structure-activity relationship, although no photodamage of the Gram-negative microorganism was recorded. A mechanism of bacterial inactivation by photosensitive surfaces is proposed.


Assuntos
Antibacterianos/química , Fibra de Algodão , Porfirinas/química , Triazinas/química , Luz , Microscopia Eletrônica de Varredura , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
8.
Mar Drugs ; 8(8): 2240-51, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20948906

RESUMO

We have studied the exopolysaccharide produced by the type strain of Salipiger mucosus, a species of halophilic, EPS-producing (exopolysaccharide-producing) bacterium belonging to the Alphaproteobacteria. The strain, isolated on the Mediterranean seaboard, produced a polysaccharide, mainly during its exponential growth phase but also to a lesser extent during the stationary phase. Culture parameters influenced bacterial growth and EPS production. Yield was always directly related to the quantity of biomass in the culture. The polymer is a heteropolysaccharide with a molecular mass of 250 kDa and its components are glucose (19.7%, w/w), mannose (34%, w/w), galactose (32.9%, w/w) and fucose (13.4%, w/w). Fucose and fucose-rich oligosaccharides have applications in the fields of medicine and cosmetics. The chemical or enzymatic hydrolysis of fucose-rich polysaccharides offers a new efficient way to process fucose. The exopolysaccharide in question produces a solution of very low viscosity that shows pseudoplastic behavior and emulsifying activity on several hydrophobic substrates. It also has a high capacity for binding cations and incorporating considerable quantities of sulfates, this latter feature being very unusual in bacterial polysaccharides.


Assuntos
Polissacarídeos Bacterianos/química , Rhodobacteraceae/isolamento & purificação , Rhodobacteraceae/metabolismo , Animais , Emulsificantes , Emulsões , Fucose/análise , Galactose/análise , Glucose/análise , Manose/análise , Mar Mediterrâneo , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/isolamento & purificação , Rhodobacteraceae/crescimento & desenvolvimento , Ésteres do Ácido Sulfúrico/análise , Ésteres do Ácido Sulfúrico/metabolismo , Viscosidade
9.
J Microbiol Biotechnol ; 20(6): 978-84, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20622495

RESUMO

This paper examines the probiotic bacterium Lactobacillus rhamnosus GG, and how it reacts to the presence of mucin in its extracellular milieu. Parameters studied included cell clustering, adhesion to mucin, extracellular protein production, and formation of final metabolites. L. rhamnosus GG was found to grow efficiently in the presence of glucose, N-acetylglucosamine, or mucin (partially purified or purified) as sole carbon sources. However, it was unable to grow using other mucin constituents, such as fucose or glucuronic acid. Mucin induced noticeable changes in all the parameters studied when compared with growth using glucose, including in the formation of cell clusters, which were easily disorganized with trypsin. Mucin increased adhesion of the bacterium, and modulated the production of extracellular proteins. SDS-PAGE revealed that mucin was not degraded during L. rhamnosus GG growth, suggesting that this bacterium is able to partially use the glucidic moiety of glycoprotein. This study goes some way towards developing an understanding of the metabolic and physiological changes that L. rhamnosus GG undergoes within the human gastrointestinal tract.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Espaço Extracelular/metabolismo , Trato Gastrointestinal/metabolismo , Lacticaseibacillus rhamnosus/fisiologia , Mucinas/metabolismo , Animais , Proteínas de Bactérias/análise , Espaço Extracelular/química , Trato Gastrointestinal/microbiologia , Humanos , Lacticaseibacillus rhamnosus/química , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Modelos Biológicos , Suínos
10.
J Microbiol Biotechnol ; 18(9): 1555-63, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18852512

RESUMO

A novel alpha-amylase (alpha-1,4-alpha-D-glucan glucanohydrolase, E.C. 3.2.1.1), ScAmy43, was found in the culture medium of the phytopathogenic fungus Sclerotinia sclerotiorum grown on oats flour. Purified to homogeneity, ScAmy43 appeared as a 43 kDa monomeric enzyme, as estimated by SDS-PAGE and Superdex 75 gel filtration. The MALDI peptide mass fingerprint of ScAmy43 tryptic digest as well as internal sequence analyses indicate that the enzyme has an original primary structure when compared with other fungal alpha- amylases. However, the sequence of the 12 N-terminal residues is homologous with those of Aspergillus awamori and Aspergillus kawachii amylases, suggesting that the new enzyme belongs to the same GH13 glycosyl hydrolase family. Assayed with soluble starch as substrate, this enzyme displayed optimal activity at pH 4 and 55oC with an apparent Km value of 1.66 mg/ml and Vmax of 0.1 micromol glucose x min-1 x ml-1. ScAmy43 activity was strongly inhibited by Cu2+, Mn2+, and Ba2+, moderately by Fe2+, and was only weakly affected by Ca2+ addition. However, since EDTA and EGTA did not inhibit ScAmy43 activity, this enzyme is probably not a metalloprotein. DTT and beta-mercaptoethanol strongly increased the enzyme activity. Starting with soluble starch as substrate, the end products were mainly maltotriose, suggesting for this enzyme an endo action.


Assuntos
Amilases/química , Amilases/metabolismo , Ascomicetos/enzimologia , alfa-Amilases/química , alfa-Amilases/metabolismo , Sequência de Aminoácidos , Amilases/genética , Amilases/isolamento & purificação , Ascomicetos/genética , Avena/metabolismo , Biocatálise , Cátions Bivalentes/farmacologia , Cromatografia , Concentração de Íons de Hidrogênio , Cinética , Metais/farmacologia , Mapeamento de Peptídeos , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Amido/metabolismo , Especificidade por Substrato , Temperatura , alfa-Amilases/genética , alfa-Amilases/isolamento & purificação
11.
FEMS Immunol Med Microbiol ; 54(1): 1-17, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18631181

RESUMO

The group of exported proteins of a bacterium are those proteins that are sorted from the cytoplasm to the bacterial surface or to the surroundings of the microorganism. In probiotic bacteria, these proteins are of special relevance because they might determine important traits such as adhesion to intestinal surfaces and molecular cross-talking with the host. Current knowledge about the presence and biological relevance of exported proteins produced by the main genera of probiotic bacteria in the gastrointestinal environment is reviewed in this minireview. As will be seen, some of these proteins are involved in host adhesion or are able to modify certain signalization pathways within host cells, whereas others are important for the physiology of probiotic bacteria in the gastrointestinal tract.


Assuntos
Bactérias/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Intestinos/imunologia , Intestinos/microbiologia , Probióticos , Bactérias/imunologia , Proteínas de Bactérias/imunologia , Bifidobacterium/imunologia , Bifidobacterium/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Intestinos/citologia , Lactobacillus/imunologia , Lactobacillus/metabolismo , Transdução de Sinais , Fatores de Transcrição TCF , Proteína 2 Semelhante ao Fator 7 de Transcrição
12.
Res Microbiol ; 157(9): 827-35, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17005380

RESUMO

We studied exopolysaccharides (EPSs) produced by Halomonas ventosae and Halomonas anticariensis, two novel species of halophilic bacteria. Under optimum environmental and nutritional conditions, H. ventosae strains Al12(T) and Al16 excreted 28.35 mg and 28.95 mg of EPS per 100 ml of culture medium (34.55 and 38.6 mg of EPS per gram of dry cell weight) respectively. The molecular masses of the polymers were about 50 kDa and their main components were glucose, mannose and galactose. They had high protein fractions and showed emulsifying activity on several hydrophobic substrates. Under optimum environmental and nutritional conditions, H. anticariensis strains FP35(T) and FP36 excreted about 29.65 and 49.95 mg of EPS per 100 ml of culture medium (43.6 and 50.95 mg of EPS per gram of dry cell weight) respectively. The molecular masses of the polymers were about 20 and 46 kDa respectively and were composed mainly of glucose, mannose and galacturonic acid. All EPSs produced solutions of low viscosity and pseudoplastic behaviour. They also had a high capacity for binding cations and incorporated considerable quantities of sulphates, which is highly unusual in bacterial polysaccharides. All strains assayed formed biofilms both in polystyrene wells and borosilicate test tubes.


Assuntos
Halomonas/metabolismo , Polissacarídeos Bacterianos/biossíntese , Biofilmes/crescimento & desenvolvimento , Meios de Cultura/química , Eletroforese em Gel de Poliacrilamida , Emulsificantes/química , Halomonas/crescimento & desenvolvimento , Halomonas/ultraestrutura , Metais Pesados/metabolismo , Metais Pesados/farmacocinética , Microscopia Eletrônica de Transmissão , Peso Molecular , Polissacarídeos Bacterianos/química , Especificidade da Espécie , Viscosidade
13.
J Clin Gastroenterol ; 38(6 Suppl): S86-90, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15220667

RESUMO

The clinical benefits observed with probiotic use are mainly attributed to the antimicrobial substances produced by probiotic strains and to their immunomodulatory effects. Currently, the best-documented probiotic bacteria used in human therapy are lactic acid bacteria. In contrast, studies aiming to characterize the mechanisms responsible for the probiotic beneficial effects of Bacillus are rare. The current work seeks to contribute to such characterization by evaluating the antimicrobial and immunomodulatory activities of probiotic B. clausii strains. B. clausii strains release antimicrobial substances in the medium. Moreover, the release of these antimicrobial substances was observed during stationary growth phase and coincided with sporulation. These substances were active against Gram-positive bacteria, in particular against Staphylococcus aureus, Enterococcus faecium, and Clostridium difficile. The antimicrobial activity was resistant to subtilisin, proteinase K, and chymotrypsin treatment, whereas it was sensitive to pronase treatment. The evaluation of the immunomodulatory properties of probiotic B. clausii strains was performed in vitro on Swiss and C57 Bl/6j murine cells. The authors demonstrate that these strains, in their vegetative forms, are able to induce NOS II synthetase activity, IFN-gamma production, and CD4 T-cell proliferation.


Assuntos
Bacillus/fisiologia , Bacteriocinas/biossíntese , Interferon gama/biossíntese , Nitritos/metabolismo , Probióticos , Animais , Bacillus/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Camundongos
14.
Res Microbiol ; 154(10): 705-12, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14643409

RESUMO

A Lactobacillus plantarum strain producing exopolysaccharides (EPSs) was isolated from corn silage. When this strain, named L. plantarum EP56, was grown on a chemically defined medium, two EPS fractions were isolated. The cell-bound EPS fraction (EPS-b) was composed of a single high-molecular-mass polymer of 8.5x10(5) Da containing glucose, galactose and N-acetylgalactosamine in a molar ratio of approximately 3:1:1 and traces of glycerol and phosphoglycerol. The released EPS fraction (EPS-r) was composed of the high-molecular-mass bound polysaccharide and a second polymer of 4x10(4) Da containing glucose, galactose and rhamnose in a molar ratio of 3:1:1 and traces of glycerol and phosphoglycerol. EPS-b and EPS-r contained phosphate which contributes to their negative net charge. Studies on polysaccharide production and location showed that both polymers were synthesized during the exponential growth phase and that the EPS-b polymer was progressively released into the culture medium during the stationary growth phase. Carbon source and temperature influenced EPS synthesis when L. plantarum EP56 was grown in a chemically defined medium. Lactose was the most efficient carbon source among the five tested (glucose, galactose, fructose, lactose and sucrose). EPS production was also increased when the incubation temperature is lowered.


Assuntos
Lactobacillus/química , Polissacarídeos Bacterianos/biossíntese , Meios de Cultura , Glicosídeo Hidrolases/metabolismo , Lactobacillus/classificação , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/isolamento & purificação , Monossacarídeos/análise , Fósforo/análise , Polissacarídeos Bacterianos/isolamento & purificação , Silagem/microbiologia , Temperatura , Zea mays/microbiologia
15.
Res Microbiol ; 153(5): 269-76, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12160317

RESUMO

One of the most interesting groups of phenolic compounds is comprised of the low molecular weight phenylpropanol derivative substances named isocoumarins, which possess important biological activities. In this study, the isocoumarin production and genetic diversity of 51 Bacillus strains isolated from different geographical and ecological niches were studied. Using molecular identification techniques, 47 strains were identified as B. subtilis, three as B. licheniformis and one as B. pumilus. When these strains were screened for isocumarin production, 11 belonging to the species B. subtilis produced amicoumacins, antibiotics of the isocoumarin group. RAPD analysis demonstrated that these strains fell into two groups which contained only these amicoumacin producers. No association was detected between RAPD profiles and the geographic origin or habitat of the strains tested. In conclusion, production of amicoumacin antibiotics by B. subtilis is a common characteristic of individual strains that presented genetic and physiological homogeneity.


Assuntos
Antibacterianos/biossíntese , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Cumarínicos/metabolismo , Antibacterianos/isolamento & purificação , Bacillus subtilis/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Cumarínicos/isolamento & purificação , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Variação Genética/fisiologia , Espectrometria de Massas , Peso Molecular , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Análise de Sequência de DNA , Staphylococcus aureus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA