Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am Nat ; 201(6): E153-E167, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37229710

RESUMO

AbstractThe global rise in anthropogenic reactive nitrogen and the negative impacts of N deposition on terrestrial plant diversity are well documented. The R* theory of resource competition predicts reversible decreases in plant diversity in response to N loading. However, empirical evidence for the reversibility of N-induced biodiversity loss is mixed. In a long-term N-enrichment experiment in Minnesota, a low-diversity state that emerged during N addition has persisted for decades after additions ceased. Hypothesized mechanisms preventing recovery of biodiversity include nutrient recycling, insufficient external seed supply, and litter inhibition of plant growth. Here, we present an ordinary differential equation model that unifies these mechanisms, produces bistability at intermediate N inputs, and qualitatively matches the observed hysteresis at Cedar Creek. Key features of the model, including native species' growth advantage in low-N conditions and limitation by litter accumulation, generalize from Cedar Creek to North American grasslands. Our results suggest that effective biodiversity restoration in these systems may require management beyond reducing N inputs, such as burning, grazing, haying, and seed additions. By coupling resource competition with an additional interspecific inhibitory process, the model also illustrates a general mechanism for bistability and hysteresis that may occur in multiple ecosystem types.


Assuntos
Ecossistema , Pradaria , Nitrogênio , Biodiversidade , Plantas , Solo
2.
R Soc Open Sci ; 5(1): 171591, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29410863

RESUMO

Ebola virus disease (EVD) is a severe infection with an extremely high fatality rate spread through direct contact with body fluids. A promising Ebola vaccine (rVSV-ZEBOV) may soon become universally available. We constructed a game-theoretic model of Ebola incorporating individual decisions to vaccinate. We found that if a population adopts selfishly optimal vaccination strategies, then the population vaccination coverage falls negligibly short of the herd immunity level. We concluded that eradication of Ebola is feasible if voluntary vaccination programmes are coupled with focused public education efforts. We conducted uncertainty and sensitivity analysis to demonstrate that our findings do not depend on the choice of the epidemiological model parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA