Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Diagn Pathol ; 19(1): 42, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395890

RESUMO

BACKGROUND: Staining tissue samples to visualise cellular detail and tissue structure is at the core of pathology diagnosis, but variations in staining can result in significantly different appearances of the tissue sample. While the human visual system is adept at compensating for stain variation, with the growth of digital imaging in pathology, the impact of this variation can be more profound. Despite the ubiquity of haematoxylin and eosin staining in clinical practice worldwide, objective quantification is not yet available. We propose a method for quantitative haematoxylin and eosin stain assessment to facilitate quality assurance of histopathology staining, enabling truly quantitative quality control and improved standardisation. METHODS: The stain quantification method comprises conventional microscope slides with a stain-responsive biopolymer film affixed to one side, called stain assessment slides. The stain assessment slides were characterised with haematoxylin and eosin, and implemented in one clinical laboratory to quantify variation levels. RESULTS: Stain assessment slide stain uptake increased linearly with duration of haematoxylin and eosin staining (r = 0.99), and demonstrated linearly comparable staining to samples of human liver tissue (r values 0.98-0.99). Laboratory implementation of this technique quantified intra- and inter-instrument variation of staining instruments at one point in time and across a five-day period. CONCLUSION: The proposed method has been shown to reliably quantify stain uptake, providing an effective laboratory quality control method for stain variation. This is especially important for whole slide imaging and the future development of artificial intelligence in digital pathology.


Assuntos
Inteligência Artificial , Corantes , Humanos , Amarelo de Eosina-(YS)/química , Coloração e Rotulagem , Corantes/química , Hematoxilina
2.
J Pathol Inform ; 13: 100157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405869

RESUMO

Background: Pathology services experienced a surge in demand during the COVID-19 pandemic. Digitalisation of pathology workflows can help to increase throughput, yet many existing digitalisation solutions use non-standardised workflows captured in proprietary data formats and processed by black-box software, yielding data of varying quality. This study presents the views of a UK-led expert group on the barriers to adoption and the required input of measurement science to improve current practices in digital pathology. Methods: With an aim to support the UK's efforts in digitalisation of pathology services, this study comprised: (1) a review of existing evidence, (2) an online survey of domain experts, and (3) a workshop with 42 representatives from healthcare, regulatory bodies, pharmaceutical industry, academia, equipment, and software manufacturers. The discussion topics included sample processing, data interoperability, image analysis, equipment calibration, and use of novel imaging modalities. Findings: The lack of data interoperability within the digital pathology workflows hinders data lookup and navigation, according to 80% of attendees. All participants stressed the importance of integrating imaging and non-imaging data for diagnosis, while 80% saw data integration as a priority challenge. 90% identified the benefits of artificial intelligence and machine learning, but identified the need for training and sound performance metrics.Methods for calibration and providing traceability were seen as essential to establish harmonised, reproducible sample processing, and image acquisition pipelines. Vendor-neutral data standards were seen as a "must-have" for providing meaningful data for downstream analysis. Users and vendors need good practice guidance on evaluation of uncertainty, fitness-for-purpose, and reproducibility of artificial intelligence/machine learning tools. All of the above needs to be accompanied by an upskilling of the pathology workforce. Conclusions: Digital pathology requires interoperable data formats, reproducible and comparable laboratory workflows, and trustworthy computer analysis software. Despite high interest in the use of novel imaging techniques and artificial intelligence tools, their adoption is slowed down by the lack of guidance and evaluation tools to assess the suitability of these techniques for specific clinical question. Measurement science expertise in uncertainty estimation, standardisation, reference materials, and calibration can help establishing reproducibility and comparability between laboratory procedures, yielding high quality data and providing higher confidence in diagnosis.

3.
J Med Eng Technol ; 45(2): 136-144, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33632055

RESUMO

There has been a marked rise in the number of avoidable deaths in health services around the world. At the same time there has been a growing increase in antibiotic resistant so-called "superbugs." We examine here the potential role of body temperature measurement in these adverse trends. Electronic based thermometers have replaced traditional mercury (and other liquid-in-glass type) thermometers for reasons of safety rather than superiority. Electronic thermometers are in general less robust from a measurement perspective than their predecessors. We illustrate the implications of unreliable temperature measurement on the diagnosis and management of disease, including COVID-19, through statistical calculations. Since a return to mercury thermometers is both undesirable and impractical, we call for better governance in the current practice of clinical thermometry to ensure the traceability and long-term accuracy of electronic thermometers and discuss how this could be achieved.


Assuntos
Temperatura Corporal/fisiologia , Termometria/métodos , COVID-19/diagnóstico , COVID-19/fisiopatologia , Humanos , Guias de Prática Clínica como Assunto , SARS-CoV-2 , Termômetros/efeitos adversos , Termômetros/normas , Termometria/efeitos adversos , Termometria/instrumentação , Termometria/normas , Incerteza
4.
J Pathol Inform ; 11: 17, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33033654

RESUMO

Pathology services are facing pressures due to the COVID-19 pandemic. Digital pathology has the capability to meet some of these unprecedented challenges by allowing remote diagnoses to be made at home, during periods of social distancing or self-isolation. However, while digital pathology allows diagnoses to be made on standard computer screens, unregulated home environments may not be conducive for optimal viewing conditions. There is also a paucity of experimental evidence available to support the minimum display requirements for digital pathology. This study presents a Point-of-Use Quality Assurance (POUQA) tool for remote assessment of viewing conditions for reporting digital pathology slides. The tool is a psychophysical test combining previous work from successfully implemented quality assurance tools in both pathology and radiology to provide a minimally intrusive display screen validation task, before viewing digital slides. The test is specific to pathology assessment in that it requires visual discrimination between colors derived from hematoxylin and eosin staining, with a perceptual difference of ±1 delta E (dE). This tool evaluates the transfer of a 1 dE signal through the digital image display chain, including the observers' contrast and color responses within the test color range. The web-based system has been rapidly developed and deployed as a response to the COVID-19 pandemic and may be used by anyone in the world to help optimize flexible working conditions at: http://www. virtualpathology.leeds.ac.uk/res earch/systems/pouqa/.

5.
J Pathol Inform ; 11: 12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477618

RESUMO

Pathology departments must rise to new staffing challenges caused by the coronavirus disease-19 pandemic and may need to work more flexibly for the foreseeable future. In light of this, many pathologists and departments are considering the merits of remote or home reporting of digital cases. While some individuals have experience of this, little work has been done to determine optimum conditions for home reporting, including technical and training considerations. In this publication produced in response to the pandemic, we provide information regarding risk assessment of home reporting of digital slides, summarize available information on specifications for home reporting computing equipment, and share access to a novel point-of-use quality assurance tool for assessing the suitability of home reporting screens for digital slide diagnosis. We hope this study provides a useful starting point and some practical guidance in a difficult time. This study forms the basis of the guidance issued by the Royal College of Pathologists, available at: https://www.rcpath.org/uploads/assets/626ead77-d7dd-42e1-949988e43dc84c97/RCPath-guidance-for-remote-digital-pathology.pdf.

6.
J Med Imaging (Bellingham) ; 7(2): 027501, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32341938

RESUMO

Purpose: As pathology departments around the world contemplate digital microscopy for primary diagnosis, making an informed choice regarding display procurement is very challenging in the absence of defined minimum standards. In order to help inform the decision, we aimed to conduct an evaluation of displays with a range of technical specifications and sizes. Approach: We invited histopathologists within our institution to take part in a survey evaluation of eight short-listed displays. Pathologists reviewed a single haematoxylin and eosin whole slide image of a benign nevus on each display and gave a single score to indicate their preference in terms of image quality and size of the display. Results: Thirty-four pathologists took part in the display evaluation experiment. The preferred display was the largest and had the highest technical specifications (11.8-MP resolution, 2100 cd / m 2 maximum luminance). The least preferred display had the lowest technical specifications (2.3-MP resolution, 300 cd / m 2 maximum luminance). A trend was observed toward an increased preference for displays with increased luminance and resolution. Conclusions: This experiment demonstrates a preference for large medical-grade displays with the high luminance and high resolution. As cost becomes implicated in procurement, significantly less expensive medical-grade displays with slightly lower technical specifications may be the most cost-effective option.

7.
Arch Pathol Lab Med ; 143(10): 1246-1255, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31021658

RESUMO

CONTEXT.­: Flexible working at diverse or remote sites is a major advantage when reporting using digital pathology, but currently there is no method to validate the clinical diagnostic setting within digital microscopy. OBJECTIVE.­: To develop a preliminary Point-of-Use Quality Assurance (POUQA) tool designed specifically to validate the diagnostic setting for digital microscopy. DESIGN.­: We based the POUQA tool on the red, green, and blue (RGB) values of hematoxylin-eosin. The tool used 144 hematoxylin-eosin-colored, 5×5-cm patches with a superimposed random letter with subtly lighter RGB values from the background color, with differing levels of difficulty. We performed an initial evaluation across 3 phases within 2 pathology departments: 1 in the United Kingdom and 1 in Sweden. RESULTS.­: In total, 53 experiments were conducted across all phases resulting in 7632 test images viewed in all. Results indicated that the display, the user's visual system, and the environment each independently impacted performance. Performance was improved with reduction in natural light and through use of medical-grade displays. CONCLUSIONS.­: The use of a POUQA tool for digital microscopy is essential to afford flexible working while ensuring patient safety. The color-contrast test provides a standardized method of comparing diagnostic settings for digital microscopy. With further planned development, the color-contrast test may be used to create a "Verified Login" for diagnostic setting validation.


Assuntos
Diagnóstico por Imagem/normas , Microscopia/normas , Patologia/normas , Sistemas Automatizados de Assistência Junto ao Leito/normas , Garantia da Qualidade dos Cuidados de Saúde/métodos , Intensificação de Imagem Radiográfica/normas , Cor , Corantes , Amarelo de Eosina-(YS) , Hematoxilina , Humanos , Processamento de Imagem Assistida por Computador , Psicometria , Coloração e Rotulagem
8.
Front Physiol ; 8: 461, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28747886

RESUMO

The crown of a human tooth has an outer layer of highly-mineralized tissue called enamel, beneath which is dentin, a less-mineralized tissue which forms the bulk of the tooth-crown and root. The composition and structure of enamel and dentin are different, resulting in different thermal properties. This gives an opportunity to characterize enamel and dentin from their thermal properties and to visually present the findings as a thermal map. The thermal properties of demineralized enamel and dentin may also be sufficiently different from sound tissue to be seen on a thermal map, underpinning future thermal assessment of caries. The primary aim of this novel study was to produce a thermal map of a sound, human tooth-slice to visually characterize enamel and dentin. The secondary aim was to map a human tooth-slice with demineralized enamel and dentin to consider future diagnostic potential of thermal maps for caries-detection. Two human slices of teeth, one sound and one demineralized from a natural carious lesion, were cooled on ice, then transferred to a hotplate at 30°C where the rewarming-sequence was captured by an infra-red thermal camera. Calculation of thermal diffusivity and thermal conductivity was undertaken, and two methods of data-processing used customized software to produce thermal maps from the thermal characteristic-time-to-relaxation and heat-exchange. The two types of thermal maps characterized enamel and dentin. In addition, sound and demineralized enamel and dentin were distinguishable within both maps. This supports thermal assessment of caries and requires further investigation on a whole tooth.

9.
J Digit Imaging ; 28(1): 68-76, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25128321

RESUMO

Performing diagnoses using virtual slides can take pathologists significantly longer than with glass slides, presenting a significant barrier to the use of virtual slides in routine practice. Given the benefits in pathology workflow efficiency and safety that virtual slides promise, it is important to understand reasons for this difference and identify opportunities for improvement. The effect of display resolution on time to diagnosis with virtual slides has not previously been explored. The aim of this study was to assess the effect of display resolution on time to diagnosis with virtual slides. Nine pathologists participated in a counterbalanced crossover study, viewing axillary lymph node slides on a microscope, a 23-in 2.3-megapixel single-screen display and a three-screen 11-megapixel display consisting of three 27-in displays. Time to diagnosis and time to first target were faster on the microscope than on the single and three-screen displays. There was no significant difference between the microscope and the three-screen display in time to first target, while the time taken on the single-screen display was significantly higher than that on the microscope. The results suggest that a digital pathology workstation with an increased number of pixels may make it easier to identify where cancer is located in the initial slide overview, enabling quick location of diagnostically relevant regions of interest. However, when a comprehensive, detailed search of a slide has to be made, increased resolution may not offer any additional benefit.


Assuntos
Terminais de Computador/normas , Processamento de Imagem Assistida por Computador/normas , Microscopia/instrumentação , Patologia Clínica/normas , Telepatologia/normas , Axila , Estudos Cross-Over , Humanos , Processamento de Imagem Assistida por Computador/métodos , Linfonodos/patologia , Variações Dependentes do Observador , Telepatologia/métodos , Fatores de Tempo
10.
Ultrasound Med Biol ; 37(6): 971-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21601138

RESUMO

The display monitor on an ultrasound scanner is used to make primary diagnoses. In this study, 31 ultrasound systems were assessed against current American Association of Physicists in Medicine (AAPM) display standards. Measurements of peak levels (L(max) and L(min)) were generated. Ambient light, L(amb) (cd/m(2)) and room illuminance, L(x) (Lux) were measured. Luminance ratio was calculated (LR' = (L(max)+L(amb))/(L(min)+L(amb))). Initially, only 8/31 systems (26%) passed all the criteria. After adjustment, a further 7/31 (23%) passed making a total of 15/31 passes (48%). A total of 16/31 (52%) were considered overall fails: three due to poor room lighting, 14 due to poor monitor performance. Considering errors this could be as low as 6/31 (19%). Although further work is required to confirm the applicability of these results, it is of concern that three-quarters of ultrasound scanners could be suboptimally adjusted with 19%-55% unable to pass the AAPM criteria. The impact of this on clinical practice is unknown but there is clearly a need to review display quality assurance on ultrasound scanners.


Assuntos
Terminais de Computador , Ultrassonografia/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Phys Med Biol ; 49(21): N363-9, 2004 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-15584535

RESUMO

Phantoms are commonly used in medical imaging for quality assurance, calibration, research and teaching. They may include test patterns or simulations of organs, but in either case a tissue substitute medium is an important component of the phantom. The aim of this work was to identify materials suitable for use as tissue substitutes for the relatively new medical imaging modality terahertz pulsed imaging. Samples of different concentrations of the candidate materials TX151 and napthol green dye were prepared, and measurements made of the frequency-dependent absorption coefficient (0.5 to 1.5 THz) and refractive index (0.5 to 1.0 THz). These results were compared qualitatively with measurements made in a similar way on samples of excised human tissue (skin, adipose tissue and striated muscle). Both materials would be suitable for phantoms where the dominant mechanism to be simulated is absorption (approximately 100 cm(-1) at 1 THz) and where simulation of the strength of reflections from boundaries is not important; for example, test patterns for spatial resolution measurements. Only TX151 had a frequency-dependent refractive index close to that of tissue, and could therefore be used to simulate the layered structure of skin, the complexity of microvasculature or to investigate frequency-dependent interference effects that have been noted in terahertz images.


Assuntos
Corantes/efeitos da radiação , Diagnóstico por Imagem/instrumentação , Diagnóstico por Imagem/métodos , Géis/efeitos da radiação , Interpretação de Imagem Assistida por Computador/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Teste de Materiais/métodos , Micro-Ondas , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA