Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Oncologist ; 29(10): 859-869, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39022993

RESUMO

INTRODUCTION: Personalized and tumor-informed circulating tumor DNA (ctDNA) testing is feasible and allows for molecular residual disease (MRD) identification in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS: In this retrospective analysis of commercial cases from multiple US institutions, personalized, tumor-informed, whole-exome sequenced, and germline-controlled ctDNA levels were quantified and analyzed in patients with PDAC. Plasma samples (n = 1329) from 298 clinically validated patients were collected at diagnosis, perioperatively (MRD-window; within 2-12 weeks after surgery, before therapy), and during surveillance (>12 weeks post-surgery if no ACT or starting 4 weeks post-ACT) from November 2019 to March 2023. RESULTS: Of the initially diagnosed patients with stages I-III PDAC who went for resection, the median follow-up time from surgery was 13 months (range 0.1-214). Positive ctDNA detection rates were 29% (29/100) and 29.6% (45/152) during the MRD and surveillance windows, respectively. Positive ctDNA detection was significantly associated with shorter DFS within the MRD window (median DFS of 6.37 months for ctDNA-positive vs 33.31 months for ctDNA-negative patients; HR: 5.45, P < .0001) as well as during the surveillance period (median DFS: 11.40 months for ctDNA-positive vs NR for ctDNA-negative; HR: 12.38, P < .0001). Additionally, DFS was significantly better with KRAS wildtype status followed by KRASG12R (HR: 0.99, P = .97), KRASG12D (HR: 1.42, P = .194), and worse with KRASG12V (HR: 2.19, P = .002) status. In multivariate analysis, ctDNA detection at surveillance was found to be the most significant prognostic factor for recurrence (HR: 24.28, P < .001). CONCLUSIONS: Perioperative tumor-informed ctDNA detection in PDAC is feasible across all stages and is associated with patient survival outcomes.


Assuntos
DNA Tumoral Circulante , Neoplasias Pancreáticas , Humanos , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Masculino , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/cirurgia , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/patologia , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Retrospectivos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/cirurgia , Carcinoma Ductal Pancreático/patologia , Idoso de 80 Anos ou mais , Medicina de Precisão/métodos , Adulto , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Adenocarcinoma/genética , Adenocarcinoma/mortalidade , Adenocarcinoma/sangue , Adenocarcinoma/cirurgia , Adenocarcinoma/patologia
2.
bioRxiv ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37873317

RESUMO

In mammals, significant injury is generally followed by the formation of a fibrotic scar which provides structural integrity but fails to functionally restore damaged tissue. Spiny mice of the genus Acomys represent the first example of full skin autotomy in mammals. Acomys cahirinus has evolved extremely weak skin as a strategy to avoid predation and is able to repeatedly regenerate healthy tissue without scar after severe skin injury or full-thickness ear punches. Extracellular matrix (ECM) composition is a critical regulator of wound repair and scar formation and previous studies have suggested that alterations in its expression may be responsible for the differences in regenerative capacity observed between Mus musculus and A. cahirinus , yet analysis of this critical tissue component has been limited in previous studies by its insolubility and resistance to extraction. Here, we utilize a 2-step ECM-optimized extraction to perform proteomic analysis of tissue composition during wound repair after full-thickness ear punches in A. cahirinus and M. musculus from weeks 1 to 4 post-injury. We observe changes in a wide range of ECM proteins which have been previously implicated in wound regeneration and scar formation, including collagens, coagulation and provisional matrix proteins, and matricryptic signaling peptides. We additionally report differences in crosslinking enzyme activity and ECM protein solubility between Mus and Acomys. Furthermore, we observed rapid and sustained increases in CD206, a marker of pro-regenerative M2 macrophages, in Acomys, whereas little or no increase in CD206 was detected in Mus. Together, these findings contribute to a comprehensive understanding of tissue cues which drive the regenerative capacity of Acomys and identify a number of potential targets for future pro-regenerative therapies.

3.
Cell Rep ; 40(10): 111313, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36070687

RESUMO

Functional implication of stromal heterogeneity in the prostate remains incompletely understood. Using lineage tracing and light-sheet imaging, we show that some fibroblast cells at the mouse proximal prostatic ducts and prostatic urethra highly express Lgr5. Genetic ablation of these anatomically restricted stromal cells, but not nonselective ablation of prostatic stromal cells, rapidly induces prostate epithelial turnover and dedifferentiation that are reversed following spontaneous restoration of the Lgr5+ stromal cells. RNA sequencing (RNA-seq) analysis indicates that ablating the Lgr5+ stromal cells activates a mechanosensory response. Ablating the Lgr5+ stromal cells impairs the control of prostatic ductal outlet, increases prostate tissue stiffness, and activates the mitogen-activated protein kinase (MAPK). Suppressing MAPK overrides the elevated epithelial proliferation. In summary, the Lgr5+ stromal cells regulate prostate tissue homeostasis and maintain its functional integrity in a long-distance manner. Our study implies that the cells at organ junctions most likely control organ homeostasis by sustaining a balanced mechanoforce.


Assuntos
Próstata , Células Estromais , Animais , Homeostase , Masculino , Camundongos , Próstata/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Células Estromais/metabolismo
4.
iScience ; 24(11): 103269, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34849462

RESUMO

Fibrosis-driven solid organ failure is an enormous burden on global health. Spiny mice (Acomys) are terrestrial mammals that can regenerate severe skin wounds without scars to avoid predation. Whether spiny mice also regenerate internal organ injuries is unknown. Here, we show that despite equivalent acute obstructive or ischemic kidney injury, spiny mice fully regenerate nephron structure and organ function without fibrosis, whereas C57Bl/6 or CD1 mice progress to complete organ failure with extensive renal fibrosis. Two mechanisms for vertebrate regeneration have been proposed that emphasize either extrinsic (pro-regenerative macrophages) or intrinsic (surviving cells of the organ itself) controls. Comparative transcriptome analysis revealed that the Acomys genome appears poised at the time of injury to initiate regeneration by surviving kidney cells, whereas macrophage accumulation was not detected until about day 7. Thus, we provide evidence for rapid activation of a gene expression signature for regenerative wound healing in the spiny mouse kidney.

5.
Dev Cell ; 56(19): 2722-2740.e6, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34610329

RESUMO

Spiny mice (Acomys cahirinus) are terrestrial mammals that evolved unique scar-free regenerative wound-healing properties. Myofibroblasts (MFs) are the major scar-forming cell type in skin. We found that following traumatic injury to ear pinnae, MFs appeared rapidly in both Acomys and mouse yet persisted only in mouse. The timing of MF loss in Acomys correlated with wound closure, blastema differentiation, and nuclear localization of the Hippo pathway target protein Yap. Experiments in vitro revealed an accelerated PP2A-dependent dephosphorylation activity that maintained nuclear Yap in Acomys dermal fibroblasts (DFs) and was not detected in mouse or human DFs. Treatment of Acomys in vivo with the nuclear Yap-TEAD inhibitor verteporfin prolonged MF persistence and converted tissue regeneration to fibrosis. Forced Yap activity prevented and rescued TGF-ß1-induced human MF formation in vitro. These results suggest that Acomys evolved modifications of Yap activity and MF fate important for scar-free regenerative wound healing in vivo.


Assuntos
Via de Sinalização Hippo/fisiologia , Cicatrização/fisiologia , Proteínas de Sinalização YAP/metabolismo , Animais , Cicatriz/metabolismo , Cicatriz/patologia , Orelha/patologia , Camundongos , Murinae/fisiologia , Miofibroblastos/metabolismo , Pele/metabolismo
8.
Appl Opt ; 47(21): 3773-7, 2008 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-18641744

RESUMO

An optical temperature sensor was created using a femtosecond micromachined diffraction grating inside transparent bulk 6H-SiC, and to the best of our knowledge, this is a novel technique of measuring temperature. Other methods of measuring temperature using fiber Bragg gratings have been devised by other groups such as Zhang and Kahrizi [in MEMS, NANO, and Smart Systems (IEEE, 2005)]. This temperature sensor was, to the best of our knowledge, also used for a novel method of measuring the linear and nonlinear coefficients of the thermal expansion of transparent and nontransparent materials by means of the grating first-order diffracted beam. Furthermore the coefficient of thermal expansion of 6H-SiC was measured using this new technique. A He-Ne laser beam was used with the SiC grating to produce a first-order diffracted beam where the change in deflection height was measured as a function of temperature. The grating was micromachined with a 20 microm spacing and has dimensions of approximately 500 microm x 500 microm (l x w) and is roughly 0.5 microm deep into the 6H-SiC bulk. A minimum temperature of 26.7 degrees C and a maximum temperature of 399 degrees C were measured, which gives a DeltaT of 372.3 degrees C. The sensitivity of the technique is DeltaT=5 degrees C. A maximum deflection angle of 1.81 degrees was measured in the first-order diffracted beam. The trend of the deflection with increasing temperature is a nonlinear polynomial of the second-order. This optical SiC thermal sensor has many high-temperature electronic applications such as aircraft turbine and gas tank monitoring for commercial and military applications.

9.
Opt Express ; 15(20): 13139-48, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19550582

RESUMO

A unique anamorphic lens design was applied to a circular 780nm femtosecond laser pulse to transform it into an elliptically shaped beam at focus. This lens was developed to give an alternative method of micromachining bulk transparent materials. The challenge for femtosecond laser processing is to control the nonlinear affect of self-focusing, which can occur when using a fast f-number lens. Once the focused spot is dominated by self-focusing the predicted focused beam becomes a filament inside the bulk, which is an undesirable effect. The anamorphic lens resolves this self-focusing by increasing the numerical aperture (NA) and employing an elliptical beam shape. The anamorphic lens was designed to furnish a 2.5mum by 190mum line at focus. Provided the pulse energy is high enough, transparent bulk material will be damaged with a single femtosecond laser pulse. Damage in this text refers to visual change in the index of refraction as observed under an optical microscope. Using this elliptical shape (or line), grating structures were micro-machined on the surface of SiC bulk transparent substrate. SiC was chosen because it is known for its micromachining difficulty and its crystalline structure. From the lack of self-focusing and using energy that is just above the damage threshold the focused line beam generated from the anamorphic lens grating structures produced a line shape nearly identical to the geometrical approximation. In this paper we discuss a new method of writing gratings (or other types of structures) in bulk transparent materials using a single femtosecond laser pulse. We will investigate the grating structures visually (inspected under an optical microscope) and also by use of an atomic force microscopy (AFM). In addition, we test the grating diffraction efficiency (DE) as a function of grating spacing, d.

10.
Holist Nurs Pract ; 18(3): 111-8; quiz 118-9, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15222599

RESUMO

Vibroacoustic therapy is a new sound technology that uses audible sound vibrations to reduce symptoms, invoke relaxation, and alleviate stress. This technology is developed based on the recognition that external vibration can influence body function. Research demonstrates the effectiveness of vibroacoustic therapy. Implications for nurses include investigating the possibilities of vibroacoustic therapy in various nursing settings to promote patient well-being and improve the therapeutic environment.


Assuntos
Estimulação Acústica , Enfermagem Holística , Musicoterapia , Dor/enfermagem , Vibração , Estimulação Acústica/métodos , Enfermagem Holística/métodos , Enfermagem Holística/normas , Humanos , Musicoterapia/métodos , Papel do Profissional de Enfermagem , Relações Enfermeiro-Paciente , Pesquisa Metodológica em Enfermagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA