Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(8): 4088-4098, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30829475

RESUMO

Results from the analysis of aqueous and solid-phase V speciation within samples collected from the Hazeltine Creek catchment affected by the August 2014 Mount Polley mine tailings dam failure in British Columbia, Canada, are presented. Electron microprobe and X-ray absorption near-edge structure (XANES) analysis found that V is present as V3+ substituted into magnetite and V3+ and V4+ substituted into titanite, both of which occur in the spilled Mount Polley tailings. Secondary Fe oxyhydroxides forming in inflow waters and on creek beds have V K-edge XANES spectra exhibiting E1/2 positions and pre-edge features consistent with the presence of V5+ species, suggesting sorption of this species on these secondary phases. PHREEQC modeling suggests that the stream waters mostly contain V5+ and the inflow and pore waters contain a mixture of V3+ and V5+. These data, and stream, inflow, and pore water chemical data, suggest that dissolution of V(III)-bearing magnetite, V(III)- and V(IV)-bearing titanite, V(V)-bearing Fe(-Al-Si-Mn) oxhydroxides, and V-bearing Al(OH)3 and/or clay minerals may have occurred. In the circumneutral pH environment of Hazeltine Creek, elevated V concentrations are likely naturally attenuated by formation of V(V)-bearing secondary Fe oxyhydroxide, Al(OH)3, or clay mineral colloids, suggesting that the V is not bioavailable. A conceptual model describing the origin and fate of V in Hazeltine Creek that is applicable to other river systems is presented.


Assuntos
Vanádio , Poluentes Químicos da Água , Colúmbia Britânica , Minerais , Rios
2.
Sensors (Basel) ; 19(4)2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30781812

RESUMO

Technological advances in hyperspectral remote sensing have been widely applied in heavy metal soil contamination studies, as they are able to provide assessments in a rapid and cost-effective way. The present work investigates the potential role of combining field and laboratory spectroradiometry with geochemical data of lead (Pb), zinc (Zn), copper (Cu) and cadmium (Cd) in quantifying and modelling heavy metal soil contamination (HMSC) for a floodplain site located in Wales, United Kingdom. The study objectives were to: (i) collect field- and lab-based spectra from contaminated soils by using ASD FieldSpec® 3, where the spectrum varies between 350 and 2500 nm; (ii) build field- and lab-based spectral libraries; (iii) conduct geochemical analyses of Pb, Zn, Cu and Cd using atomic absorption spectrometer; (iv) identify the specific spectral regions associated to the modelling of HMSC; and (v) develop and validate heavy metal prediction models (HMPM) for the aforementioned contaminants, by considering their spectral features and concentrations in the soil. Herein, the field- and lab-based spectral features derived from 85 soil samples were used successfully to develop two spectral libraries, which along with the concentrations of Pb, Zn, Cu and Cd were combined to build eight HMPMs using stepwise multiple linear regression. The results showed, for the first time, the feasibility to predict HMSC in a highly contaminated floodplain site by combining soil geochemistry analyses and field spectroradiometry. The generated models help for mapping heavy metal concentrations over a huge area by using space-borne hyperspectral sensors. The results further demonstrated the feasibility of combining geochemistry analyses with filed spectroradiometric data to generate models that can predict heavy metal concentrations.

3.
Environ Sci Pollut Res Int ; 21(11): 6952-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24197965

RESUMO

Local remediation measures, particularly those undertaken in historical mining areas, can often be ineffective or even deleterious because erosion and sedimentation processes operate at spatial scales beyond those typically used in point-source remediation. Based on realistic simulations of a hybrid landscape evolution model combined with stochastic rainfall generation, we demonstrate that similar remediation strategies may result in differing effects across three contrasting European catchments depending on their topographic and hydrologic regimes. Based on these results, we propose a conceptual model of catchment-scale remediation effectiveness based on three basic catchment characteristics: the degree of contaminant source coupling, the ratio of contaminated to non-contaminated sediment delivery, and the frequency of sediment transport events.


Assuntos
Poluentes Ambientais/análise , Recuperação e Remediação Ambiental/métodos , Sedimentos Geológicos/química , Mineração , Modelos Teóricos , Simulação por Computador , Europa (Continente) , Chuva , Processos Estocásticos
4.
Environ Pollut ; 158(6): 2158-69, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20338677

RESUMO

In this study Pb isotope signatures were used to identify the provenance of contaminant metals and establish patterns of downstream sediment dispersal within the River Maritsa catchment, which is impacted by the mining of polymetallic ores. A two-fold modelling approach was undertaken to quantify sediment-associated metal delivery to the Maritsa catchment; employing binary mixing models in tributary systems and a composite fingerprinting and mixing model approach in the wider Maritsa catchment. Composite fingerprints were determined using Pb isotopic and multi-element geochemical data to characterize sediments delivered from tributary catchments. Application of a mixing model allowed a quantification of the percentage contribution of tributary catchments to the sediment load of the River Maritsa. Sediment delivery from tributaries directly affected by mining activity contributes 42-63% to the sediment load of the River Maritsa, with best-fit regression relationships indicating that sediments originating from mining-affected tributaries are being dispersed over 200 km downstream.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Chumbo/análise , Modelos Teóricos , Rios/química , Poluentes Químicos da Água/análise , Bulgária , Isótopos , Mineração , Análise Multivariada
5.
Environ Geochem Health ; 31(6): 741-58, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19301128

RESUMO

Groundwater, accessed using wells and municipal springs, represents the major source of potable water for the human population outside of major urban areas in northwestern Romania, a region with a long history of metal mining and metallurgy. The magnitude and spatial distribution of metal contamination in private-supply groundwater was investigated in four mining-affected river catchments in Maramures and Satu Mare Counties through the collection of 144 groundwater samples. Bedrock geology, pH and Eh were found to be important controls on the solubility of metals in groundwater. Peak metal concentrations were found to occur in the Lapus catchment, where metal levels exceed Dutch target and intervention values in up to 49% and 14% of samples, respectively. A 700 m wide corridor in the Lapus catchment on either side of the main river channel was identified in which peak Cd (31 µg l(-1)), Cu (50 µg l(-1)), Pb (50 µg l(-1)) and Zn (3,000 µg l(-1)) concentrations were found to occur. Given the generally similar bedrock geologies, lower metal levels in other catchments are believed to reflect differences in the magnitude of metal loading to the local environment from both metal mining and other industrial and municipal sources. Sampling of groundwater in northwestern Romania has indicated areas of potential concern for human health, where heavy metal concentrations exceed accepted environmental quality guidelines. The presence of elevated metal levels in groundwater also has implications for the implementation of the EU Water Framework Directive (WFD) and achieving 'good' status for groundwater in this part of the Danube River Basin District (RBD).


Assuntos
Água Potável/análise , Água Subterrânea/análise , Metais Pesados/análise , Mineração , Rios/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Espectrometria de Massas , Romênia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA