Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
J Biol Chem ; 298(1): 101461, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864057

RESUMO

Inflammasome signaling results in cell death and release of cytokines from the IL-1 family, which facilitates control over an infection. However, some pathogens such as Salmonella typhimurium (ST) activate various innate immune signaling pathways, including inflammasomes, yet evade these cell death mechanisms, resulting in a chronic infection. Here we investigated inflammasome signaling induced by acute and chronic isolates of ST obtained from different organs. We show that ST isolated from infected mice during the acute phase displays an increased potential to activate inflammasome signaling, which then undergoes a protracted decline during the chronic phase of infection. This decline in inflammasome signaling was associated with reduced expression of virulence factors, including flagella and the Salmonella pathogenicity island I genes. This reduction in cell death of macrophages induced by chronic isolates had the greatest impact on the NLRP3 inflammasome, which correlated with a reduction in caspase-1 activation. Furthermore, rapid cell death induced by Casp-1/11 by ST in macrophages limited the subsequent activation of cell death cascade proteins Casp-8, RipK1, RipK3, and MLKL to prevent the activation of alternative forms of cell death. We observed that the lack of the ability to induce cell death conferred a competitive fitness advantage to ST only during the acute phase of infection. Finally, we show that the chronic isolates displayed a significant attenuation in their ability to infect mice through the oral route. These results reveal that ST adapts during chronic infection by circumventing inflammasome recognition to promote the survival of both the host and the pathogen.


Assuntos
Inflamassomos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Infecções por Salmonella , Salmonella typhimurium , Animais , Caspase 1/genética , Caspase 1/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Inflamassomos/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/isolamento & purificação
3.
Blood ; 126(13): 1621-8, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26265697

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a naturally occurring immune regulatory population associated with inhibition of ongoing inflammatory responses. In vitro generation of MDSCs from bone marrow has been shown to enhance survival in an acute model of lethal graft-versus-host disease (GVHD). However, donor MDSC infusion only partially ameliorates GVHD lethality. In order to improve the potential therapeutic benefit and ultimately survival outcomes, we set out to investigate the fate of MDSCs after transfer in the setting of acute GVHD (aGVHD). MDSCs transferred to lethally irradiated recipients of allogeneic donor hematopoietic grafts are exposed to an intense inflammatory environment associated with aGVHD, which we now show directly undermines their suppressive capacity. Under a conditioning regimen and GVHD inflammatory settings, MDSCs rapidly lose suppressor function and their potential to inhibit GVHD lethality, which is associated with their induced conversion toward a mature inflammasome-activated state. We find even brief in vitro exposure to inflammasome-activating mediators negates the suppressive potential of cultured murine and human-derived MDSCs. Consistent with a role for the inflammasome, donor MDSCs deficient in the adaptor ASC (apoptosis-associated speck-like protein containing a CARD), which assembles inflammasome complexes, conferred improved survival of mice developing GVHD compared with wild-type donor MDSCs. These data suggest the use of MDSCs as a therapeutic approach for preventing GVHD and other systemic inflammatory conditions will be more effective when combined with approaches limiting in vivo MDSC inflammasome activation, empowering MDSCs to maintain their suppressive potential.


Assuntos
Transferência Adotiva , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/terapia , Inflamassomos/imunologia , Células Mieloides/imunologia , Células Mieloides/transplante , Animais , Células da Medula Óssea/citologia , Antígenos CD11/imunologia , Diferenciação Celular , Células Cultivadas , Doença Enxerto-Hospedeiro/patologia , Humanos , Interleucina-1beta/imunologia , Camundongos , Células Mieloides/citologia , Células Mieloides/patologia
4.
Methods Mol Biol ; 1032: 287-95, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23943461

RESUMO

Transcript profiling reveals valuable insights to molecular and cellular activity related to disease. Gene expression profiles provide clues as to how tissues or cells in a particular environment may respond to stimuli. Gene-targeted examination of transcript changes is accomplished by employing a quantitative PCR approach using cDNA prepared from isolated RNA.


Assuntos
Perfilação da Expressão Gênica , Hipersensibilidade/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , DNA Complementar/genética , Regulação da Expressão Gênica , Estudos de Associação Genética , Humanos , Hipersensibilidade/imunologia , Fenótipo
5.
Shock ; 38(5): 532-42, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23042190

RESUMO

The continued development of nuclear weapons and the potential for thermonuclear injury necessitates the further understanding of the immune consequences after radiation combined with injury (RCI). We hypothesized that sublethal ionization radiation exposure combined with a full-thickness thermal injury would result in the production of immature myeloid cells. Mice underwent either a full-thickness contact burn of 20% total body surface area or sham procedure followed by a single whole-body dose of 5-Gy radiation. Serum, spleen, and peripheral lymph nodes were harvested at 3 and 14 days after injury. Flow cytometry was performed to identify and characterize adaptive and innate cell compartments. Elevated proinflammatory and anti-inflammatory serum cytokines and profound leukopenia were observed after RCI. A population of cells with dual expression of the cell surface markers Gr-1 and CD11b were identified in all experimental groups, but were significantly elevated after burn alone and RCI at 14 days after injury. In contrast to the T-cell-suppressive nature of myeloid-derived suppressor cells found after trauma and sepsis, myeloid cells after RCI augmented T-cell proliferation and were associated with a weak but significant increase in interferon γ and a decrease in interleukin 10. This is consistent with previous work in burn injury indicating that a myeloid-derived suppressor cell-like population increases innate immunity. Radiation combined injury results in the increase in distinct populations of Gr-1CD11b cells within the secondary lymphoid organs, and we propose these immature inflammatory myeloid cells provide innate immunity to the severely injured and immunocompromised host.


Assuntos
Queimaduras/imunologia , Raios gama/efeitos adversos , Células Mieloides/imunologia , Lesões Experimentais por Radiação/imunologia , Animais , Queimaduras/sangue , Queimaduras/patologia , Citocinas/sangue , Citocinas/imunologia , Feminino , Citometria de Fluxo , Leucopenia/sangue , Leucopenia/etiologia , Leucopenia/imunologia , Leucopenia/patologia , Linfonodos/imunologia , Linfonodos/metabolismo , Linfonodos/patologia , Camundongos , Células Mieloides/metabolismo , Células Mieloides/patologia , Armas Nucleares , Lesões Experimentais por Radiação/sangue , Lesões Experimentais por Radiação/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia
6.
J Allergy Clin Immunol ; 130(4): 869-76.e2, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22770265

RESUMO

BACKGROUND: Atopic asthmatic patients are reported to be more sensitive to the effects of environmental endotoxin (LPS) than healthy volunteers (HVs). It is unknown whether this sensitivity is due to dysregulated inflammatory responses after LPS exposure in atopic asthmatic patients. OBJECTIVE: We sought to test the hypothesis that atopic asthmatic patients respond differentially to inhaled LPS challenge compared with HVs. METHODS: Thirteen allergic asthmatic (AA) patients and 18 nonallergic nonasthmatic subjects (healthy volunteers [HVs]) underwent an inhalation challenge to 20,000 endotoxin units of Clinical Center Reference Endotoxin (LPS). Induced sputum and peripheral blood were obtained at baseline and 6 hours after inhaled LPS challenge. Sputum and blood samples were assayed for changes in inflammatory cell numbers and cytokine and cell-surface marker levels on monocytes and macrophages. RESULTS: The percentage of neutrophils in sputum (%PMN) in induced sputum similarly and significantly increased in both HVs and AA patients after inhaled LPS challenge. However, the absolute numbers of leukocytes and PMNs recruited to the airways were significantly lower in AA patients compared with those seen in HVs with inhaled LPS challenge. Sputum levels of IL-6 and TNF-α were significantly increased in both cohorts, but levels of IL-1ß and IL-18 were only significantly increased in the HV group. Cell-surface expression of Toll-like receptors 4 and 2 were significantly enhanced only in the HV group. CONCLUSIONS: The airway inflammatory response to inhaled LPS challenge is blunted in AA patients compared with that seen in HVs and accompanied by reductions in airway neutrophilia and inflammasome-dependent cytokine production. These factors might contribute to increased susceptibility to airway microbial infection or colonization in AA patients.


Assuntos
Asma/patologia , Lipopolissacarídeos/farmacologia , Neutrófilos/fisiologia , Adulto , Movimento Celular , Citocinas/sangue , Feminino , Humanos , Macrófagos/imunologia , Masculino , Escarro/citologia , Receptor 4 Toll-Like/fisiologia
9.
Nat Immunol ; 12(5): 408-15, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21478880

RESUMO

High-fat diet (HFD) and inflammation are key contributors to insulin resistance and type 2 diabetes (T2D). Interleukin (IL)-1ß plays a role in insulin resistance, yet how IL-1ß is induced by the fatty acids in an HFD, and how this alters insulin signaling, is unclear. We show that the saturated fatty acid palmitate, but not unsaturated oleate, induces the activation of the NLRP3-ASC inflammasome, causing caspase-1, IL-1ß and IL-18 production. This pathway involves mitochondrial reactive oxygen species and the AMP-activated protein kinase and unc-51-like kinase-1 (ULK1) autophagy signaling cascade. Inflammasome activation in hematopoietic cells impairs insulin signaling in several target tissues to reduce glucose tolerance and insulin sensitivity. Furthermore, IL-1ß affects insulin sensitivity through tumor necrosis factor-independent and dependent pathways. These findings provide insights into the association of inflammation, diet and T2D.


Assuntos
Proteínas de Transporte/imunologia , Gorduras na Dieta/imunologia , Inflamassomos/imunologia , Resistência à Insulina/imunologia , Ácido Palmítico/imunologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Autofagia/imunologia , Caspase 1/imunologia , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Interleucina-1beta/imunologia , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Proteína 3 que Contém Domínio de Pirina da Família NLR , Oligopeptídeos/farmacologia , Espécies Reativas de Oxigênio/imunologia , Ribonucleotídeos/farmacologia , Transdução de Sinais
10.
J Immunol ; 185(9): 5476-85, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20921527

RESUMO

Francisella tularensis is a facultative intracellular pathogen and potential biothreat agent. Evasion of the immune response contributes to the extraordinary virulence of this organism although the mechanism is unclear. Whereas wild-type strains induced low levels of cytokines, an F. tularensis ripA deletion mutant (LVSΔripA) provoked significant release of IL-1ß, IL-18, and TNF-α by resting macrophages. IL-1ß and IL-18 secretion was dependent on inflammasome components pyrin-caspase recruitment domain/apoptotic speck-containing protein with a caspase recruitment domain and caspase-1, and the TLR/IL-1R signaling molecule MyD88 was required for inflammatory cytokine synthesis. Complementation of LVSΔripA with a plasmid encoding ripA restored immune evasion. Similar findings were observed in a human monocytic line. The presence of ripA nearly eliminated activation of MAPKs including ERK1/2, JNK, and p38, and pharmacologic inhibitors of these three MAPKs reduced cytokine induction by LVSΔripA. Animals infected with LVSΔripA mounted a stronger IL-1ß and TNF-α response than that of mice infected with wild-type live vaccine strain. This analysis revealed novel immune evasive mechanisms of F. tularensis.


Assuntos
Francisella tularensis/patogenicidade , Genes Bacterianos/imunologia , Inflamação/genética , Macrófagos/imunologia , Proteínas Quinases Ativadas por Mitógeno/genética , Transdução de Sinais/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Western Blotting , Citocinas/biossíntese , Ensaio de Imunoadsorção Enzimática , Feminino , Francisella tularensis/genética , Francisella tularensis/imunologia , Genes Bacterianos/genética , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/imunologia , Transdução de Sinais/imunologia , Tularemia/genética , Tularemia/imunologia
11.
J Immunol ; 183(3): 2008-15, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19587006

RESUMO

Bacterial infection elicits a range of beneficial as well as detrimental host inflammatory responses. Key among these responses are macrophage/monocyte necrosis, release of the proinflammatory factor high-mobility group box 1 protein (HMGB1), and induction of the cytokine IL-1. Although the control of IL-1beta has been well studied, processes that control macrophage cell death and HMGB1 release in animals are poorly understood. This study uses Klebsiella pneumonia as a model organism because it elicits all three responses in vivo. The regulation of these responses is studied in the context of the inflammasome components NLRP3 and ASC, which are important for caspase-1 activation and IL-1beta release. Using a pulmonary infection model that reflects human infection, we show that K. pneumonia-induced mouse macrophage necrosis, HMGB1, and IL-1beta release are dependent on NLRP3 and ASC. K. pneumoniae infection of mice lacking Nlrp3 results in decreased lung inflammation and reduced survival relative to control, indicating the overall protective role of this gene. Macrophage/monocyte necrosis and HMGB1 release are controlled independently of caspase-1, suggesting that the former two responses are separable from inflammasome-associated functions. These results provide critical in vivo validation that the physiologic role of NLRP3 and ASC is not limited to inflammasome formation.


Assuntos
Proteínas de Transporte/fisiologia , Caspase 1/metabolismo , Proteínas do Citoesqueleto/fisiologia , Proteína HMGB1/metabolismo , Pneumonia/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Proteínas Adaptadoras de Sinalização CARD , Modelos Animais de Doenças , Inflamação/metabolismo , Inflamação/microbiologia , Interleucina-1beta/metabolismo , Klebsiella , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Necrose , Pneumonia/microbiologia , Pneumonia/patologia
12.
Ann Allergy Asthma Immunol ; 100(3): 206-15, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18426139

RESUMO

BACKGROUND: Environmental exposure to endotoxin is a known cause of exacerbation of asthma. Inhaled endotoxin protocols have been used to evaluate airway cell surface phenotypes associated with antigen presentation and innate immunity in healthy volunteers, but not in allergic volunteers. OBJECTIVES: To establish the safety of challenge with low-dose endotoxin (10,000 endotoxin units) (lipopolysaccharide [LPS]) inhalation in allergic individuals, to measure airway cell surface phenotypes associated with antigen presentation and innate immunity in induced sputum (IS) after LPS challenge, and to conduct gene expression profiling in IS cells to determine which host genetic networks are modified by LPS inhalation. METHODS: Induced sputum was obtained before and 6 hours after LPS inhalation in 10 allergic volunteers (8 with asthma and 2 with rhinitis). Flow cytometry was used to examine cell surface phenotypes on IS cells. Genomic expression was analyzed on a subset of IS samples (n = 10) using microarray and ingenuity pathway analysis. RESULTS: A total of 10,000 endotoxin units of LPS induced significant up-regulation of membrane CD14, CD11b, CD16, HLA-DR, CD86, and Fcepsilon receptor 1 on sputum phagocytes and increased expression of genes that influence antigen-presenting surface molecules (HLA-DR, chemokine ligand 2 or monocyte chemoattractant protein 1, v-rel reticuloendotheliosis viral oncogene homolog, prostaglandin-endoperoxide synthase 2 or cyclooxygenase 2, and transforming growth factor beta), immune activation (CD14, interleukin 1beta, and regulated upon activation, normal T cell expressed and secreted), and inflammation (intracellular adhesion molecule 1 and inhibitory kappaBalpha). Gene profiles for nuclear factor kappaB, interleukin 1, and tumor necrosis factor pathways were also significantly affected. CONCLUSIONS: Low-dose inhaled endotoxin challenge is safe in allergic individuals with mild to moderate disease. It enhances airway cell surface phenotypes and expression of genes associated with antigen presentation, innate immunity, and inflammation. Microarray with ingenuity pathway analysis can be successfully applied to sputum cells to characterize genetic responses to inhaled exacerbants.


Assuntos
Asma/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Rinite Alérgica Perene/metabolismo , Escarro/citologia , Escarro/metabolismo , Administração por Inalação , Adulto , Apresentação de Antígeno , Asma/genética , Asma/imunologia , Feminino , Perfilação da Expressão Gênica , Humanos , Imunidade Inata , Mediadores da Inflamação/imunologia , Lipopolissacarídeos/administração & dosagem , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Fenótipo , Rinite Alérgica Perene/genética , Rinite Alérgica Perene/imunologia , Escarro/imunologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA