Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Front Radiol ; 3: 1327075, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38304343

RESUMO

Introduction: Ultra-high field MR imaging offers marked gains in signal-to-noise ratio, spatial resolution, and contrast which translate to improved pathological and anatomical sensitivity. These benefits are particularly relevant for the neonatal brain which is rapidly developing and sensitive to injury. However, experience of imaging neonates at 7T has been limited due to regulatory, safety, and practical considerations. We aimed to establish a program for safely acquiring high resolution and contrast brain images from neonates on a 7T system. Methods: Images were acquired from 35 neonates on 44 occasions (median age 39 + 6 postmenstrual weeks, range 33 + 4 to 52 + 6; median body weight 2.93 kg, range 1.57 to 5.3 kg) over a median time of 49 mins 30 s. Peripheral body temperature and physiological measures were recorded throughout scanning. Acquired sequences included T2 weighted (TSE), Actual Flip angle Imaging (AFI), functional MRI (BOLD EPI), susceptibility weighted imaging (SWI), and MR spectroscopy (STEAM). Results: There was no significant difference between temperature before and after scanning (p = 0.76) and image quality assessment compared favorably to state-of-the-art 3T acquisitions. Anatomical imaging demonstrated excellent sensitivity to structures which are typically hard to visualize at lower field strengths including the hippocampus, cerebellum, and vasculature. Images were also acquired with contrast mechanisms which are enhanced at ultra-high field including susceptibility weighted imaging, functional MRI, and MR spectroscopy. Discussion: We demonstrate safety and feasibility of imaging vulnerable neonates at ultra-high field and highlight the untapped potential for providing important new insights into brain development and pathological processes during this critical phase of early life.

3.
Dev Dyn ; 250(3): 450-464, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32776603

RESUMO

BACKGROUND: Abnormal fetal movements are implicated in joint pathologies such as arthrogryposis and developmental dysplasia of the hip (DDH). Experimentally induced paralysis disrupts joint cavitation and morphogenesis leading to postnatal abnormalities. However, the developmental window(s) most sensitive to immobility-and therefore the best time for intervention-have never been identified. Here, we systematically vary the timing and duration of paralysis during early chick hip joint development. We then test whether external manipulation of immobilized limbs can mitigate the effects of immobility. RESULTS: Timing of paralysis affected the level of disruption to joints, with paralysis periods between embryonic days 4 and 7 most detrimental. Longer paralysis periods produced greater disruption in terms of failed cavitation and abnormal femoral and acetabular geometry. External manipulation of an immobilized limb led to more normal morphogenesis and cavitation compared to un-manipulated limbs. CONCLUSIONS: Temporary paralysis is detrimental to joint development, particularly during days 4 to 7. Developmental processes in the very early stages of joint development may be critical to DDH, arthrogryposis, and other joint pathologies. The developing limb has the potential to recover from periods of immobility, and external manipulation provides an innovative avenue for prevention and treatment of developmental joint pathologies.


Assuntos
Acetábulo/embriologia , Articulação do Quadril/embriologia , Morfogênese , Paralisia , Animais , Embrião de Galinha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA