Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Front Chem ; 8: 783, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33033715

RESUMO

There is considerable interest in developing drugs and probes targeted to mitochondria in order to understand and treat the many pathologies associated with mitochondrial dysfunction. The large membrane potential, negative inside, across the mitochondrial inner membrane enables delivery of molecules conjugated to lipophilic phosphonium cations to the organelle. Due to their combination of charge and hydrophobicity, quaternary triarylphosphonium cations rapidly cross biological membranes without the requirement for a carrier. Their extent of uptake is determined by the magnitude of the mitochondrial membrane potential, as described by the Nernst equation. To further enhance this uptake here we explored whether incorporation of a carboxylic acid into a quaternary triarylphosphonium cation would enhance its mitochondrial uptake in response to both the membrane potential and the mitochondrial pH gradient (alkaline inside). Accumulation of arylpropionic acid derivatives depended on both the membrane potential and the pH gradient. However, acetic or benzoic derivatives did not accumulate, due to their lowered pKa. Surprisingly, despite not being taken up by mitochondria, the phenylacetic or phenylbenzoic derivatives were not retained within mitochondria when generated within the mitochondrial matrix by hydrolysis of their cognate esters. Computational studies, supported by crystallography, showed that these molecules passed through the hydrophobic core of mitochondrial inner membrane as a neutral dimer. This finding extends our understanding of the mechanisms of membrane permeation of lipophilic cations and suggests future strategies to enhance drug and probe delivery to mitochondria.

2.
Cell Chem Biol ; 26(3): 449-461.e8, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30713096

RESUMO

Mitochondrial glutathione (GSH) and thioredoxin (Trx) systems function independently of the rest of the cell. While maintenance of mitochondrial thiol redox state is thought vital for cell survival, this was not testable due to the difficulty of manipulating the organelle's thiol systems independently of those in other cell compartments. To overcome this constraint we modified the glutathione S-transferase substrate and Trx reductase (TrxR) inhibitor, 1-chloro-2,4-dinitrobenzene (CDNB) by conjugation to the mitochondria-targeting triphenylphosphonium cation. The result, MitoCDNB, is taken up by mitochondria where it selectively depletes the mitochondrial GSH pool, catalyzed by glutathione S-transferases, and directly inhibits mitochondrial TrxR2 and peroxiredoxin 3, a peroxidase. Importantly, MitoCDNB inactivates mitochondrial thiol redox homeostasis in isolated cells and in vivo, without affecting that of the cytosol. Consequently, MitoCDNB enables assessment of the biomedical importance of mitochondrial thiol homeostasis in reactive oxygen species production, organelle dynamics, redox signaling, and cell death in cells and in vivo.


Assuntos
Mitocôndrias/metabolismo , Compostos de Sulfidrila/química , Animais , Cromatografia Líquida de Alta Pressão , Dinitroclorobenzeno/análise , Dinitroclorobenzeno/química , Dinitroclorobenzeno/metabolismo , Dinitroclorobenzeno/farmacologia , Glutationa/química , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Células Hep G2 , Humanos , Fígado/química , Fígado/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Oxirredução , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas em Tandem , Tiorredoxinas/antagonistas & inibidores , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
3.
J Biol Chem ; 293(44): 17208-17217, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30232152

RESUMO

Mitochondrial reactive oxygen species (ROS) production is a tightly regulated redox signal that transmits information from the organelle to the cell. Other mitochondrial signals, such as ATP, are sensed by enzymes, including the key metabolic sensor and regulator, AMP-activated protein kinase (AMPK). AMPK responds to the cellular ATP/AMP and ATP/ADP ratios by matching mitochondrial ATP production to demand. Previous reports proposed that AMPK activity also responds to ROS, by ROS acting on redox-sensitive cysteine residues (Cys-299/Cys-304) on the AMPK α subunit. This suggests an appealing model in which mitochondria fine-tune AMPK activity by both adenine nucleotide-dependent mechanisms and by redox signals. Here we assessed whether physiological levels of ROS directly alter AMPK activity. To this end we added exogenous hydrogen peroxide (H2O2) to cells and utilized the mitochondria-targeted redox cycler MitoParaquat to generate ROS within mitochondria without disrupting oxidative phosphorylation. Mitochondrial and cytosolic thiol oxidation was assessed by measuring peroxiredoxin dimerization and by redox-sensitive fluorescent proteins. Replacing the putative redox-active cysteine residues on AMPK α1 with alanines did not alter the response of AMPK to H2O2 In parallel with measurements of AMPK activity, we measured the cell ATP/ADP ratio. This allowed us to separate the effects on AMPK activity due to ROS production from those caused by changes in this ratio. We conclude that AMPK activity in response to redox changes is not due to direct action on AMPK itself, but is a secondary consequence of redox effects on other processes, such as mitochondrial ATP production.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Ativação Enzimática , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Mitocôndrias/genética , Fibras Musculares Esqueléticas/enzimologia , Fibras Musculares Esqueléticas/metabolismo , Oxirredução
4.
Cell Chem Biol ; 24(10): 1285-1298.e12, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28890317

RESUMO

Mitochondrial superoxide (O2⋅-) underlies much oxidative damage and redox signaling. Fluorescent probes can detect O2⋅-, but are of limited applicability in vivo, while in cells their usefulness is constrained by side reactions and DNA intercalation. To overcome these limitations, we developed a dual-purpose mitochondrial O2⋅- probe, MitoNeoD, which can assess O2⋅- changes in vivo by mass spectrometry and in vitro by fluorescence. MitoNeoD comprises a O2⋅--sensitive reduced phenanthridinium moiety modified to prevent DNA intercalation, as well as a carbon-deuterium bond to enhance its selectivity for O2⋅- over non-specific oxidation, and a triphenylphosphonium lipophilic cation moiety leading to the rapid accumulation within mitochondria. We demonstrated that MitoNeoD was a versatile and robust probe to assess changes in mitochondrial O2⋅- from isolated mitochondria to animal models, thus offering a way to examine the many roles of mitochondrial O2⋅- production in health and disease.


Assuntos
Mitocôndrias/metabolismo , Sondas Moleculares/metabolismo , Superóxidos/metabolismo , Animais , Transporte Biológico , Linhagem Celular , DNA/química , DNA/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Modelos Moleculares , Sondas Moleculares/química , Conformação de Ácido Nucleico , Oxirredução
5.
J Biol Chem ; 292(35): 14486-14495, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28710281

RESUMO

Nitrate (NO3-) and nitrite (NO2-) are known to be cardioprotective and to alter energy metabolism in vivo NO3- action results from its conversion to NO2- by salivary bacteria, but the mechanism(s) by which NO2- affects metabolism remains obscure. NO2- may act by S-nitrosating protein thiols, thereby altering protein activity. But how this occurs, and the functional importance of S-nitrosation sites across the mammalian proteome, remain largely uncharacterized. Here we analyzed protein thiols within mouse hearts in vivo using quantitative proteomics to determine S-nitrosation site occupancy. We extended the thiol-redox proteomic technique, isotope-coded affinity tag labeling, to quantify the extent of NO2--dependent S-nitrosation of proteins thiols in vivo Using this approach, called SNOxICAT (S-nitrosothiol redox isotope-coded affinity tag), we found that exposure to NO2- under normoxic conditions or exposure to ischemia alone results in minimal S-nitrosation of protein thiols. However, exposure to NO2- in conjunction with ischemia led to extensive S-nitrosation of protein thiols across all cellular compartments. Several mitochondrial protein thiols exposed to the mitochondrial matrix were selectively S-nitrosated under these conditions, potentially contributing to the beneficial effects of NO2- on mitochondrial metabolism. The permeability of the mitochondrial inner membrane to HNO2, but not to NO2-, combined with the lack of S-nitrosation during anoxia alone or by NO2- during normoxia places constraints on how S-nitrosation occurs in vivo and on its mechanisms of cardioprotection and modulation of energy metabolism. Quantifying S-nitrosated protein thiols now allows determination of modified cysteines across the proteome and identification of those most likely responsible for the functional consequences of NO2- exposure.


Assuntos
Modelos Animais de Doenças , Mitocôndrias Cardíacas/metabolismo , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Nitritos/metabolismo , Processamento de Proteína Pós-Traducional , Regulação para Cima , Marcadores de Afinidade/metabolismo , Animais , Cardiotônicos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Cisteína/metabolismo , Feminino , Coração/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Dilatação Mitocondrial/efeitos dos fármacos , Isquemia Miocárdica/tratamento farmacológico , Nitratos/farmacologia , Nitritos/farmacologia , Nitrosação/efeitos dos fármacos , Compostos de Potássio/farmacologia , Proteômica/métodos , Ratos Wistar , Regulação para Cima/efeitos dos fármacos
6.
Free Radic Biol Med ; 89: 668-78, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26453920

RESUMO

Mitochondrial oxidative damage contributes to a wide range of pathologies. One therapeutic strategy to treat these disorders is targeting antioxidants to mitochondria by conjugation to the lipophilic triphenylphosphonium (TPP) cation. To date only hydrophobic antioxidants have been targeted to mitochondria; however, extending this approach to hydrophilic antioxidants offers new therapeutic and research opportunities. Here we report the development and characterization of MitoC, a mitochondria-targeted version of the hydrophilic antioxidant ascorbate. We show that MitoC can be taken up by mitochondria, despite the polarity and acidity of ascorbate, by using a sufficiently hydrophobic link to the TPP moiety. MitoC reacts with a range of reactive species, and within mitochondria is rapidly recycled back to the active ascorbate moiety by the glutathione and thioredoxin systems. Because of this accumulation and recycling MitoC is an effective antioxidant against mitochondrial lipid peroxidation and also decreases aconitase inactivation by superoxide. These findings show that the incorporation of TPP function can be used to target polar and acidic compounds to mitochondria, opening up the delivery of a wide range of bioactive compounds. Furthermore, MitoC has therapeutic potential as a new mitochondria-targeted antioxidant, and is a useful tool to explore the role(s) of ascorbate within mitochondria.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Ácido Ascórbico/química , Ácido Ascórbico/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Mitocôndrias Hepáticas/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Mitocôndrias Hepáticas/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
7.
Free Radic Biol Med ; 89: 883-94, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26454075

RESUMO

Superoxide is the proximal reactive oxygen species (ROS) produced by the mitochondrial respiratory chain and plays a major role in pathological oxidative stress and redox signaling. While there are tools to detect or decrease mitochondrial superoxide, none can rapidly and specifically increase superoxide production within the mitochondrial matrix. This lack impedes progress, making it challenging to assess accurately the roles of mitochondrial superoxide in cells and in vivo. To address this unmet need, we synthesized and characterized a mitochondria-targeted redox cycler, MitoParaquat (MitoPQ) that comprises a triphenylphosphonium lipophilic cation conjugated to the redox cycler paraquat. MitoPQ accumulates selectively in the mitochondrial matrix driven by the membrane potential. Within the matrix, MitoPQ produces superoxide by redox cycling at the flavin site of complex I, selectively increasing superoxide production within mitochondria. MitoPQ increased mitochondrial superoxide in isolated mitochondria and cells in culture ~a thousand-fold more effectively than untargeted paraquat. MitoPQ was also more toxic than paraquat in the isolated perfused heart and in Drosophila in vivo. MitoPQ enables the selective generation of superoxide within mitochondria and is a useful tool to investigate the many roles of mitochondrial superoxide in pathology and redox signaling in cells and in vivo.


Assuntos
Herbicidas/farmacologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Hepáticas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Paraquat/farmacologia , Superóxidos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Complexo I de Transporte de Elétrons , Feminino , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Oxirredução , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Phys Rev Lett ; 88(22): 221803, 2002 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-12059415

RESUMO

The B0-B-0 oscillation frequency has been measured with a sample of 23 x 10(6) BB- pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives deltamd = 0.493+/-0.012(stat)+/-0.009(syst) ps-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA