RESUMO
At present, there are no effective therapies to ameliorate injury, accelerate recovery, or prevent postinjury fibrosis after AKI. Here, we sought to identify candidate compounds that accelerate recovery after AKI by screening for small molecules that increase proliferation of renal progenitor cells in zebrafish embryos. One compound identified from this screen was the histone deacetylase inhibitor methyl-4-(phenylthio)butanoate, which we subsequently administered to zebrafish larvae and mice 24-48 hours after inducing AKI. In zebrafish, treatment with the compound increased larval survival and proliferation of renal tubular epithelial cells. In mice, treatment accelerated recovery, reduced postinjury tubular atrophy and interstitial fibrosis, and increased the regenerative capacity of actively cycling renal tubular cells by decreasing the number of cells in G2/M arrest. These data suggest that accelerating recovery may be a viable approach to treating AKI and provide proof of concept that a screen in zebrafish embryos can identify therapeutic candidates for kidney injury.
Assuntos
Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/enzimologia , Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Fenilbutiratos/farmacologia , Proteínas de Peixe-Zebra/antagonistas & inibidores , Injúria Renal Aguda/patologia , Animais , Modelos Animais de Doenças , Fibrose , Gentamicinas/toxicidade , Histona Desacetilase 1/metabolismo , Isquemia/tratamento farmacológico , Isquemia/enzimologia , Isquemia/patologia , Rim/efeitos dos fármacos , Rim/enzimologia , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Inibidores da Síntese de Proteínas/toxicidade , Recuperação de Função Fisiológica/efeitos dos fármacos , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismoRESUMO
The discovery that histone deacetylase inhibitors (HDACis) can attenuate acute kidney injury (AKI)-mediated damage and reduce fibrosis in kidney disease models has opened the possibility of utilizing HDACis as therapeutics for renal injury. Studies to date have made it abundantly clear that HDACi treatment results in a plethora of molecular changes, which are not always linked to histone acetylation, and that there is an essential need to understand the specific target(s) of any HDACi of interest. New lines of investigation are beginning to delve more deeply into target identification of specific HDACis and to address the relative toxicity of different HDACi classes. This review will focus on the utilization of HDACis during kidney organogenesis, injury, and disease, as well as on the development of these compounds as therapeutics.
Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Nefropatias/tratamento farmacológico , Rim/efeitos dos fármacos , Animais , Inibidores de Histona Desacetilases/efeitos adversos , Humanos , Rim/embriologia , Rim/enzimologia , Rim/patologia , Nefropatias/enzimologia , Nefropatias/patologia , Organogênese , Resultado do TratamentoRESUMO
Kidney function requires the appropriate distribution of membrane proteins between the apical and basolateral surfaces along the kidney tubule. Further, the absolute amount of a protein at the cell surface versus intracellular compartments must be attuned to specific physiological needs. Endolyn (CD164) is a transmembrane protein that is expressed at the brush border and in apical endosomes of the proximal convoluted tubule and in lysosomes of more distal segments of the kidney. Endolyn has been shown to regulate CXCR4 signaling in hematopoietic precursor cells and myoblasts; however, little is known about endolyn function in the adult or developing kidney. Here we identify endolyn as a gene important for zebrafish pronephric kidney function. Zebrafish endolyn lacks the N-terminal mucin-like domain of the mammalian protein, but is otherwise highly conserved. Using in situ hybridization we show that endolyn is expressed early during development in zebrafish brain, eye, gut and pronephric kidney. Embryos injected with a translation-inhibiting morpholino oligonucleotide targeted against endolyn developed pericardial edema, hydrocephaly and body curvature. The pronephric kidney appeared normal morphologically, but clearance of fluorescent dextran injected into the common cardinal vein was delayed, consistent with a defect in the regulation of water balance in morphant embryos. Heterologous expression of rat endolyn rescued the morphant phenotypes. Interestingly, rescue experiments using mutant rat endolyn constructs revealed that both apical sorting and endocytic/lysosomal targeting motifs are required for normal pronephric kidney function. This suggests that both polarized targeting and postendocytic trafficking of endolyn are essential for the protein's proper function in mammalian kidney.
Assuntos
Polaridade Celular , Endocitose , Endolina/metabolismo , Rim/embriologia , Rim/metabolismo , Pronefro/embriologia , Peixe-Zebra/embriologia , Envelhecimento/metabolismo , Animais , Polaridade Celular/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Endocitose/efeitos dos fármacos , Endolina/química , Técnicas de Silenciamento de Genes , Rim/anatomia & histologia , Rim/citologia , Células Madin Darby de Rim Canino , Mamíferos/embriologia , Mamíferos/metabolismo , Morfolinos/farmacologia , Especificidade de Órgãos , Pronefro/metabolismo , Estrutura Terciária de Proteína , Ratos , Relação Estrutura-Atividade , Peixe-Zebra/metabolismoRESUMO
Accurate material properties of developing embryonic tissues are a crucial factor in studies of the mechanics of morphogenesis. In the present work, we characterize the viscoelastic material properties of the looping heart tube in the chick embryo through nonlinear finite element modeling and microindentation experiments. Both hysteresis and ramp-hold experiments were performed on the intact heart and isolated cardiac jelly (extracellular matrix). An inverse computational method was used to determine the constitutive relations for the myocardium and cardiac jelly. With both layers assumed to be quasilinear viscoelastic, material coefficients for an Ogden type strain-energy density function combined with Prony series of two terms or less were determined by fitting numerical results from a simplified model of a heart segment to experimental data. The experimental and modeling techniques can be applied generally for determining viscoelastic material properties of embryonic tissues.
Assuntos
Galinhas , Elasticidade , Coração/anatomia & histologia , Miocárdio/citologia , Animais , Fenômenos Biomecânicos , Matriz Extracelular/metabolismo , Análise de Elementos Finitos , Coração/crescimento & desenvolvimento , ViscosidadeRESUMO
Respiratory distress syndrome (RDS), which is the leading cause of death in premature infants, is caused by surfactant deficiency. The most critical and abundant phospholipid in pulmonary surfactant is saturated phosphatidylcholine (SatPC), which is synthesized in alveolar type II cells de novo or by the deacylation-reacylation of existing phosphatidylcholine species. We recently cloned and partially characterized a mouse enzyme with characteristics of a lung lysophosphatidylcholine acyltransferase (LPCAT1) that we predicted would be involved in surfactant synthesis. Here, we describe our studies investigating whether LPCAT1 is required for pulmonary surfactant homeostasis. To address this issue, we generated mice bearing a hypomorphic allele of Lpcat1 (referred to herein as Lpcat1GT/GT mice) using a genetrap strategy. Newborn Lpcat1GT/GT mice showed varying perinatal mortality from respiratory failure, with affected animals demonstrating hallmarks of respiratory distress such as atelectasis and hyaline membranes. Lpcat1 mRNA levels were reduced in newborn Lpcat1GT/GT mice and directly correlated with SatPC content, LPCAT1 activity, and survival. Surfactant isolated from dead Lpcat1GT/GT mice failed to reduce minimum surface tension to wild-type levels. Collectively, these data demonstrate that full LPCAT1 activity is required to achieve the levels of SatPC essential for the transition to air breathing.