Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Chem Theory Comput ; 19(19): 6839-6847, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37725050

RESUMO

Some proteins are conformational switches, able to transition between relatively different conformations. To understand what drives them requires computing the free-energy difference ΔGAB between their stable states, A and B. Molecular dynamics (MD) simulations alone are often slow because they require a reaction coordinate and must sample many transitions in between. Here, we show that modeling employing limited data (MELD) x MD on known endstates A and B is accurate and efficient because it does not require passing over barriers or knowing reaction coordinates. We validate this method on two problems: (1) it gives correct relative populations of α and ß conformers for small designed chameleon sequences of protein G; and (2) it correctly predicts the conformations of the C-terminal domain (CTD) of RfaH. Free-energy methods like MELD x MD can often resolve structures that confuse machine-learning (ML) methods.

2.
J Chem Theory Comput ; 18(3): 1929-1935, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35133832

RESUMO

Recently, predicting the native structures of proteins has become possible using computational molecular physics (CMP)─physics-based force fields sampled with proper statistics─but only for small proteins. Algorithms with better scaling are needed. We describe ML x MELD x MD, a molecular dynamics (MD) method that inputs residue contacts derived from machine learning (ML) servers into MELD, a Bayesian accelerator that preserves detailed-balance statistics. Contacts are derived from trRosetta-predicted distance histograms (distograms) and are integrated into MELD's atomistic MD as spatial restraints through parametrized potential functions. In the CASP14 blind prediction event, ML x MELD x MD predicted 13 native structures to better than 4.5 Šerror, including for 10 proteins in the range of 115-250 amino acids long. Also, the scaling of simulation time vs protein length is much better than unguided MD: tsim ∼ e0.023N for ML x MELD x MD vs tsim ∼ e0.168N for MD alone. This shows how machine learning information can be leveraged to advance physics-based modeling of proteins.


Assuntos
Simulação de Dinâmica Molecular , Dobramento de Proteína , Teorema de Bayes , Biologia Computacional/métodos , Aprendizado de Máquina , Conformação Proteica
3.
J Chem Theory Comput ; 18(1): 374-379, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34877865

RESUMO

Molecular docking algorithms are used to seek the most active compounds from a pool of ligands. In principle, molecular dynamics (MD) simulations with accurate physical potentials and sampling could yield better enrichments, but they are computationally expensive. Here, we describe a method called MELD-Bracket that utilizes biased replica exchange ladders in MD in order to compete different ligands against each other within a fast bracket style "binding tournament". MELD-Bracket finds best-binders rapidly when ligands are well separated in their binding affinities.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas/química
4.
Science ; 370(6520)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33243857

RESUMO

Every protein has a story-how it folds, what it binds, its biological actions, and how it misbehaves in aging or disease. Stories are often inferred from a protein's shape (i.e., its structure). But increasingly, stories are told using computational molecular physics (CMP). CMP is rooted in the principled physics of driving forces and reveals granular detail of conformational populations in space and time. Recent advances are accessing longer time scales, larger actions, and blind testing, enabling more of biology's stories to be told in the language of atomistic physics.


Assuntos
Simulação por Computador , Modelos Moleculares , Proteínas , Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus
5.
J Chem Theory Comput ; 16(10): 6377-6382, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32910647

RESUMO

Predicting the poses of small-molecule ligands in protein binding sites is often done by virtual screening algorithms such as DOCK. In principle, molecular dynamics (MD) using atomistic force fields could give better free-energy-based pose selection, but MD is computationally expensive. Here, we ask if modeling employing limited data (MELD)-accelerated MD (MELD × MD) can pick out the best DOCK poses taken as input. We study 30 different ligand-protein pairs. MELD × MD finds native poses, based on best free energies, in 23 out of the 30 cases, 20 of which were previously known DOCK failures. We conclude that MELD × MD can add value for predicting accurate poses of small molecules bound to proteins.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Ligantes
6.
Proteins ; 88(8): 1082-1090, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32142178

RESUMO

Targets in the protein docking experiment CAPRI (Critical Assessment of Predicted Interactions) generally present new challenges and contribute to new developments in methodology. In rounds 38 to 45 of CAPRI, most targets could be effectively predicted using template-based methods. However, the server ClusPro required structures rather than sequences as input, and hence we had to generate and dock homology models. The available templates also provided distance restraints that were directly used as input to the server. We show here that such an approach has some advantages. Free docking with template-based restraints using ClusPro reproduced some interfaces suggested by weak or ambiguous templates while not reproducing others, resulting in correct server predicted models. More recently we developed the fully automated ClusPro TBM server that performs template-based modeling and thus can use sequences rather than structures of component proteins as input. The performance of the server, freely available for noncommercial use at https://tbm.cluspro.org, is demonstrated by predicting the protein-protein targets of rounds 38 to 45 of CAPRI.


Assuntos
Simulação de Acoplamento Molecular , Peptídeos/química , Proteínas/química , Software , Sequência de Aminoácidos , Benchmarking , Sítios de Ligação , Humanos , Ligantes , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteínas/metabolismo , Projetos de Pesquisa , Homologia Estrutural de Proteína , Termodinâmica
7.
Proteins ; 88(8): 1037-1049, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31891416

RESUMO

Peptide-protein docking is challenging due to the considerable conformational freedom of the peptide. CAPRI rounds 38-45 included two peptide-protein interactions, both characterized by a peptide forming an additional beta strand of a beta sheet in the receptor. Using the Rosetta FlexPepDock peptide docking protocol we generated top-performing, high-accuracy models for targets 134 and 135, involving an interaction between a peptide derived from L-MAG with DLC8. In addition, we were able to generate the only medium-accuracy models for a particularly challenging target, T121. In contrast to the classical peptide-mediated interaction, in which receptor side chains contact both peptide backbone and side chains, beta-sheet complementation involves a major contribution to binding by hydrogen bonds between main chain atoms. To establish how binding affinity and specificity are established in this special class of peptide-protein interactions, we extracted PeptiDBeta, a benchmark of solved structures of different protein domains that are bound by peptides via beta-sheet complementation, and tested our protocol for global peptide-docking PIPER-FlexPepDock on this dataset. We find that the beta-strand part of the peptide is sufficient to generate approximate and even high resolution models of many interactions, but inclusion of adjacent motif residues often provides additional information necessary to achieve high resolution model quality.


Assuntos
Dineínas/química , Simulação de Acoplamento Molecular , Glicoproteína Associada a Mielina/química , Peptídeos/química , Proteínas/química , Software , Sequência de Aminoácidos , Animais , Sítios de Ligação , Dineínas/metabolismo , Humanos , Ligação de Hidrogênio , Ligantes , Camundongos , Glicoproteína Associada a Mielina/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteínas/metabolismo , Projetos de Pesquisa , Homologia Estrutural de Proteína , Termodinâmica
8.
J Comput Aided Mol Des ; 34(2): 179-189, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31879831

RESUMO

We describe a new template-based method for docking flexible ligands such as macrocycles to proteins. It combines Monte-Carlo energy minimization on the manifold, a fast manifold search method, with BRIKARD for complex flexible ligand searching, and with the MELD accelerator of Replica-Exchange Molecular Dynamics simulations for atomistic degrees of freedom. Here we test the method in the Drug Design Data Resource blind Grand Challenge competition. This method was among the best performers in the competition, giving sub-angstrom prediction quality for the majority of the targets.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Desenho de Fármacos , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Simulação de Acoplamento Molecular , Secretases da Proteína Precursora do Amiloide/química , Ácido Aspártico Endopeptidases/química , Sítios de Ligação , Humanos , Ligantes , Simulação de Dinâmica Molecular , Método de Monte Carlo , Ligação Proteica , Termodinâmica
9.
Proteins ; 87(12): 1333-1340, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31350773

RESUMO

We describe the performance of MELD-accelerated molecular dynamics (MELDxMD) in determining protein structures in the NMR-data-assisted category in CASP13. Seeded from web server predictions, MELDxMD was found best in the NMR category, over 17 targets, outperforming the next-best groups by a factor of ~4 in z-score. MELDxMD gives ensembles, not single structures; succeeds on a 326-mer, near the current upper limit for NMR structures; and predicts structures that match experimental residual dipolar couplings even though the only NMR-derived data used in the simulations was NOE-based ambiguous atom-atom contacts and backbone dihedrals. MELD can use noisy and ambiguous experimental information to reduce the MD search space. We believe MELDxMD is a promising method for determining protein structures from NMR data.


Assuntos
Biologia Computacional/métodos , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas/química , Algoritmos , Reprodutibilidade dos Testes
10.
J Chem Theory Comput ; 15(5): 3381-3389, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-30908034

RESUMO

It is challenging to predict the docked conformations of two proteins. Current methods are susceptible to errors from treating proteins as rigid bodies and from an inability to compute relative Boltzmann populations of different docked conformations. Here, we show that by using the ClusPro server as a front end to generate possible protein-protein contacts, and using Modeling Employing Limited Data (MELD) accelerated molecular dynamics (MELD × MD) as a back end for atomistic simulations, we can find 16/20 native dimer structures of small proteins as those having the lowest free energy, starting from good-bound-backbone structures. We show that atomistic MD free energies can be used to identify native protein dimer structures.


Assuntos
Simulação de Dinâmica Molecular , Multimerização Proteica , Proteínas/química , Conformação Proteica
11.
Chem Rev ; 117(19): 12385-12414, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949513

RESUMO

How are water's material properties encoded within the structure of the water molecule? This is pertinent to understanding Earth's living systems, its materials, its geochemistry and geophysics, and a broad spectrum of its industrial chemistry. Water has distinctive liquid and solid properties: It is highly cohesive. It has volumetric anomalies-water's solid (ice) floats on its liquid; pressure can melt the solid rather than freezing the liquid; heating can shrink the liquid. It has more solid phases than other materials. Its supercooled liquid has divergent thermodynamic response functions. Its glassy state is neither fragile nor strong. Its component ions-hydroxide and protons-diffuse much faster than other ions. Aqueous solvation of ions or oils entails large entropies and heat capacities. We review how these properties are encoded within water's molecular structure and energies, as understood from theories, simulations, and experiments. Like simpler liquids, water molecules are nearly spherical and interact with each other through van der Waals forces. Unlike simpler liquids, water's orientation-dependent hydrogen bonding leads to open tetrahedral cage-like structuring that contributes to its remarkable volumetric and thermal properties.

12.
Sci Adv ; 2(11): e1601274, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27847872

RESUMO

We report a key proof of principle of a new acceleration method [Modeling Employing Limited Data (MELD)] for predicting protein structures by molecular dynamics simulation. It shows that such Boltzmann-satisfying techniques are now sufficiently fast and accurate to predict native protein structures in a limited test within the Critical Assessment of Structure Prediction (CASP) community-wide blind competition.


Assuntos
Simulação de Dinâmica Molecular , Dobramento de Proteína , Proteínas/química , Software
13.
J Comput Aided Mol Des ; 30(11): 1067-1077, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27632227

RESUMO

We describe here some tests we made in the SAMPL5 communal event of 'Semi-Explicit Assembly' (SEA), a recent method for computing solvation free energies. We combined the prospective tests of SAMPL5 with followup retrospective calculations, to improve two technical aspects of the field variant of SEA. First, SEA uses an approximate analytical surface around the solute on which a water potential is computed. We have improved and simplified the mathematical model of that surface. Second, some of the solutes in SAMPL5 were large enough to need a way to treat solvating waters interacting with 'buried atoms', i.e. interior atoms of the solute. We improved SEA with a buried-atom correction. We also compare SEA to Thermodynamic Integration molecular dynamics simulations, so that we can sort out force field errors.


Assuntos
Simulação por Computador , Cicloexanos/química , Preparações Farmacêuticas/química , Água/química , Descoberta de Drogas , Modelos Químicos , Estrutura Molecular , Solubilidade , Solventes/química , Termodinâmica
14.
J Chem Theory Comput ; 11(10): 4770-9, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26574266

RESUMO

Force fields, such as Amber's ff12SB, can be fairly accurate models of the physical forces in proteins and other biomolecules. When coupled with accurate solvation models, force fields are able to bring insight into the conformational preferences, transitions, pathways, and free energies for these biomolecules. When computational speed/cost matters, implicit solvent is often used but at the cost of accuracy. We present an empirical grid-like correction term, in the spirit of cMAPs, to the combination of the ff12SB protein force field and the GBneck2 implicit-solvent model. Ff12SB-cMAP is parametrized on experimental helicity data. We provide validation on a set of peptides and proteins. Ff12SB-cMAP successfully improves the secondary structure biases observed in ff12SB + Gbneck2. Ff12SB-cMAP can be downloaded ( https://github.com/laufercenter/Amap.git ) and used within the Amber package. It can improve the agreement of force fields + implicit solvent with experiments.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Dobramento de Proteína , Solventes/química
15.
Phys Chem Chem Phys ; 14(34): 11896-903, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22722404

RESUMO

In this work we study the transferability of systematically coarse-grained (CG) potentials for polymer-additive systems. The CG nonbonded potentials between the polymer (atactic polystyrene) and three different additives (ethylbenzene, methane and neopentane) are derived using the Conditional Reversible Work (CRW) method, recently proposed by us [Brini et al., Phys. Chem. Chem. Phys., 2011, 13, 10468-10474]. A CRW-based effective pair potential corresponds to the interaction free energy between the two atom groups of an atomistic parent model that represent the coarse-grained interaction sites. Since the CRW coarse-graining procedure does not involve any form of parameterisation, thermodynamic and structural properties of the condensed phase are predictions of the model. We show in this work that CRW-based CG models of polymer-additive systems are capable of predicting the correct structural correlations in the mixture. Furthermore, the excess chemical potentials of the additives obtained with the CRW-based CG models and the united-atom parent models are in satisfactory agreement and the CRW-based CG models show a good temperature transferability. The temperature transferability of the model is discussed by analysing the entropic and enthalpic contributions to the excess chemical potentials. We find that CRW-based CG models provide good predictions of the excess entropies, while discrepancies are observed in the excess enthalpies. Overall, we show that the CRW CG potentials are suitable to model structural and thermodynamic properties of polymer-penetrant systems.

16.
Phys Chem Chem Phys ; 13(22): 10468-74, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21541381

RESUMO

Systematically coarse grained models for complex fluids usually lack chemical and thermodynamic transferability. Efforts to improve transferability require the development of effective potentials with unequivocal physical significance. In this paper, we introduce conditional reversible work (CRW) potentials that describe nonbonded interactions in coarse grained models at the pair level. The method used to obtain these potentials is straightforward to implement, can be readily extended to compute hydration contributions in implicit-solvent potentials, and is easy to automize. As a first illustration of the method, we present CRW potentials for 3-site models of hexane and toluene. The temperature-transferability of the liquid phase density obtained with these potentials has been investigated, and a comparison has been made with effective potentials obtained by the iterative Boltzmann inversion method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA