Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Development ; 147(18)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958507

RESUMO

The FaceBase Consortium was established by the National Institute of Dental and Craniofacial Research in 2009 as a 'big data' resource for the craniofacial research community. Over the past decade, researchers have deposited hundreds of annotated and curated datasets on both normal and disordered craniofacial development in FaceBase, all freely available to the research community on the FaceBase Hub website. The Hub has developed numerous visualization and analysis tools designed to promote integration of multidisciplinary data while remaining dedicated to the FAIR principles of data management (findability, accessibility, interoperability and reusability) and providing a faceted search infrastructure for locating desired data efficiently. Summaries of the datasets generated by the FaceBase projects from 2014 to 2019 are provided here. FaceBase 3 now welcomes contributions of data on craniofacial and dental development in humans, model organisms and cell lines. Collectively, the FaceBase Consortium, along with other NIH-supported data resources, provide a continuously growing, dynamic and current resource for the scientific community while improving data reproducibility and fulfilling data sharing requirements.


Assuntos
Pesquisa em Odontologia/métodos , Ossos Faciais/fisiologia , Crânio/fisiologia , Animais , Bases de Dados Factuais , Humanos , Reprodutibilidade dos Testes , Pesquisadores
2.
Development ; 143(14): 2677-88, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27287806

RESUMO

The FaceBase Consortium, funded by the National Institute of Dental and Craniofacial Research, National Institutes of Health, is designed to accelerate understanding of craniofacial developmental biology by generating comprehensive data resources to empower the research community, exploring high-throughput technology, fostering new scientific collaborations among researchers and human/computer interactions, facilitating hypothesis-driven research and translating science into improved health care to benefit patients. The resources generated by the FaceBase projects include a number of dynamic imaging modalities, genome-wide association studies, software tools for analyzing human facial abnormalities, detailed phenotyping, anatomical and molecular atlases, global and specific gene expression patterns, and transcriptional profiling over the course of embryonic and postnatal development in animal models and humans. The integrated data visualization tools, faceted search infrastructure, and curation provided by the FaceBase Hub offer flexible and intuitive ways to interact with these multidisciplinary data. In parallel, the datasets also offer unique opportunities for new collaborations and training for researchers coming into the field of craniofacial studies. Here, we highlight the focus of each spoke project and the integration of datasets contributed by the spokes to facilitate craniofacial research.


Assuntos
Bases de Dados Factuais , Face/embriologia , Pesquisadores , Crânio/embriologia , Animais , Imunoprecipitação da Cromatina , Biologia Computacional , Genômica , Humanos , Camundongos , Modelos Animais , Peixe-Zebra
3.
Artif Intell Med ; 69: 12-21, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27235801

RESUMO

OBJECTIVE: The Foundational Model of Anatomy (FMA) [Rosse C, Mejino JLV. A reference ontology for bioinformatics: the Foundational Model of Anatomy. J. Biomed. Inform. 2003;36:478-500] is an ontology that represents canonical anatomy at levels ranging from the entire body to biological macromolecules, and has rapidly become the primary reference ontology for human anatomy, and a template for model organisms. Prior to this work, the FMA was developed in a knowledge modeling language known as Protégé Frames. Frames is an intuitive representational language, but is no longer the industry standard. Recognizing the need for an official version of the FMA in the more modern semantic web language OWL2 (hereafter referred to as OWL), the objective of this work was to create a generalizable Frames-to-OWL conversion tool, to use the tool to convert the FMA to OWL, to "clean up" the converted FMA so that it classifies under an EL reasoner, and then to do all further development in OWL. METHODS: The conversion tool is a Java application that uses the Protégé knowledge representation API for interacting with the initial Frames ontology, and uses the OWL-API for producing new statements (axioms, etc.) in OWL. The converter is relation centric. The conversion is configurable, on a property-by-property basis, via user-specifiable XML configuration files. The best conversion, for each property, was determined in conjunction with the FMA knowledge author. The convertor is potentially generalizable, which we partially demonstrate by using it to convert our Ontology of Craniofacial Development and Malformation as well as the FMA. Post-conversion cleanup involved using the Explain feature of Protégé to trace classification errors under the ELK reasoner in Protégé, fixing the errors, then re-running the reasoner. RESULTS: We are currently doing all our development in the converted and cleaned-up version of the FMA. The FMA (updated every 3 months) is available via our FMA web page http://si.washington.edu/projects/fma, which also provides access to mailing lists, an issue tracker, a SPARQL endpoint (updated every week), and an online browser. The converted OCDM is available at http://www.si.washington.edu/projects/ocdm. The conversion code is open source, and available at http://purl.org/sig/software/frames2owl. Prior to the post-conversion cleanup 73% of the more than 100,000 classes were unsatisfiable. After correction of six types of errors no classes remained unsatisfiable. CONCLUSION: Because our FMA conversion captures all or most of the information in the Frames version, is the only complete OWL version that classifies under an EL reasoner, and is maintained by the FMA authors themselves, we propose that this version should be the only official release version of the FMA in OWL, supplanting all other versions. Although several issues remain to be resolved post-conversion, release of a single, standardized version of the FMA in OWL will greatly facilitate its use in informatics research and in the development of a global knowledge base within the semantic web. Because of the fundamental nature of anatomy in both understanding and organizing biomedical information, and because of the importance of the FMA in particular in representing human anatomy, the FMA in OWL should greatly accelerate the development of an anatomically based structural information framework for organizing and linking a large amount of biomedical information.


Assuntos
Anatomia , Ontologias Biológicas , Linguagens de Programação , Web Semântica , Biologia Computacional , Humanos
4.
CEUR Workshop Proc ; 17472016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28217040

RESUMO

We created the Ontology of Craniofacial Development and Malformation (OCDM) [1] to provide a unifying framework for organizing and integrating craniofacial data ranging from genes to clinical phenotypes from multi-species. Within this framework we focused on spatio-structural representation of anatomical entities related to craniofacial development and malformation, such as craniosynostosis and midface hypoplasia. Animal models are used to support human studies and so we built multi-species ontologies that would allow for cross-species correlation of anatomical information. For this purpose we first developed and enhanced the craniofacial component of the human musculoskeletal system in the Foundational Model of Anatomy Ontology (FMA)[2], and then imported this component, which we call the Craniofacial Human Ontology (CHO), into the OCDM. The CHO was then used as a template to create the anatomy for the mouse, the Craniofacial Mouse Ontology (CMO) as well as for the zebrafish, the Craniofacial Zebrafish Ontology (CZO).

5.
Radiographics ; 35(1): 142-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25590394

RESUMO

Disorders of the peripheral nervous system have traditionally been evaluated using clinical history, physical examination, and electrodiagnostic testing. In selected cases, imaging modalities such as magnetic resonance (MR) neurography may help further localize or characterize abnormalities associated with peripheral neuropathies, and the clinical importance of such techniques is increasing. However, MR image interpretation with respect to peripheral nerve anatomy and disease often presents a diagnostic challenge because the relevant knowledge base remains relatively specialized. Using the radiology knowledge resource RadLex®, a series of RadLex queries, the Annotation and Image Markup standard for image annotation, and a Web services-based software architecture, the authors developed an application that allows ontology-assisted image navigation. The application provides an image browsing interface, allowing users to visually inspect the imaging appearance of anatomic structures. By interacting directly with the images, users can access additional structure-related information that is derived from RadLex (eg, muscle innervation, muscle attachment sites). These data also serve as conceptual links to navigate from one portion of the imaging atlas to another. With 3.0-T MR neurography of the brachial plexus as the initial area of interest, the resulting application provides support to radiologists in the image interpretation process by allowing efficient exploration of the MR imaging appearance of relevant nerve segments, muscles, bone structures, vascular landmarks, anatomic spaces, and entrapment sites, and the investigation of neuromuscular relationships.


Assuntos
Neuropatias do Plexo Braquial/diagnóstico , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Atlas como Assunto , Humanos , Internet , Software
6.
Front Physiol ; 5: 163, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24860508

RESUMO

Orofacial clefting is a common birth defect with wide phenotypic variability. Many systems have been developed to classify cleft patterns to facilitate diagnosis, management, surgical treatment, and research. In this review, we examine the rationale for different existing classification schemes and determine their inter-relationships, as well as strengths and deficiencies for subclassification of clefts of the lip. The various systems differ in how they describe and define attributes of cleft lip (CL) phenotypes. Application and analysis of the CL classifications reveal discrepancies that may result in errors when comparing studies that use different systems. These inconsistencies in terminology, variable levels of subclassification, and ambiguity in some descriptions may confound analyses and impede further research aimed at understanding the genetics and etiology of clefts, development of effective treatment options for patients, as well as cross-institutional comparisons of outcome measures. Identification and reconciliation of discrepancies among existing systems is the first step toward creating a common standard to allow for a more explicit interpretation that will ultimately lead to a better understanding of the causes and manifestations of phenotypic variations in clefting.

7.
J Biomed Semantics ; 5(1): 1, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24398054

RESUMO

BACKGROUND: The diverse set of human brain structure and function analysis methods represents a difficult challenge for reconciling multiple views of neuroanatomical organization. While different views of organization are expected and valid, no widely adopted approach exists to harmonize different brain labeling protocols and terminologies. Our approach uses the natural organizing framework provided by anatomical structure to correlate terminologies commonly used in neuroimaging. DESCRIPTION: The Foundational Model of Anatomy (FMA) Ontology provides a semantic framework for representing the anatomical entities and relationships that constitute the phenotypic organization of the human body. In this paper we describe recent enhancements to the neuroanatomical content of the FMA that models cytoarchitectural and morphological regions of the cerebral cortex, as well as white matter structure and connectivity. This modeling effort is driven by the need to correlate and reconcile the terms used in neuroanatomical labeling protocols. By providing an ontological framework that harmonizes multiple views of neuroanatomical organization, the FMA provides developers with reusable and computable knowledge for a range of biomedical applications. CONCLUSIONS: A requirement for facilitating the integration of basic and clinical neuroscience data from diverse sources is a well-structured ontology that can incorporate, organize, and associate neuroanatomical data. We applied the ontological framework of the FMA to align the vocabularies used by several human brain atlases, and to encode emerging knowledge about structural connectivity in the brain. We highlighted several use cases of these extensions, including ontology reuse, neuroimaging data annotation, and organizing 3D brain models.

8.
Artigo em Inglês | MEDLINE | ID: mdl-24303230

RESUMO

We introduce the Ontology of Craniofacial Development and Malformation (OCDM), a project of the NIH-funded FaceBase consortium, whose goal is to gather data from multiple species, at levels ranging from genes to gross anatomy, in order to understand the causes of craniofacial abnormalities. The OCDM is being developed in order to facilitate integration of these diverse forms of data in a central Hub. It currently consists of several components, including human adult and developmental anatomy, corresponding mouse structures, and malformations. Example queries show the potential of the OCDM for intelligent data annotation and querying.

9.
CEUR Workshop Proc ; 1060: 74-77, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28261023

RESUMO

In this paper we describe an ontological scheme for representing anatomical entities undergoing morphological transformation and changes in phenotype during prenatal development. This is a proposed component of the Anatomical Transformation Abstraction (ATA) of the Foundational Model of Anatomy (FMA) Ontology that was created to provide an ontological framework for capturing knowledge about human development from the zygote to postnatal life. It is designed to initially describe the structural properties of the anatomical entities that participate in human development and then enhance their description with developmental properties, such as temporal attributes and developmental processes. This approach facilitates the correlation and integration of the classical but static representation of embryology with the evolving novel concepts of developmental biology, which primarily deals with the experimental data on the mechanisms of embryogenesis and organogenesis. This is important for describing and understanding the underlying processes involved in structural malformations. In this study we focused on the development of the lips and the palate in conjunction with our work on the pathogenesis and classification of cleft lip and palate (CL/P) in the FaceBase program. Our aim here is to create the Craniofacial Human Development Ontology (CHDO) to support the Ontology of Craniofacial Development and Malformation (OCDM), which provides the infrastructure for integrating multiple and disparate craniofacial data generated by FaceBase researchers.

10.
J Biomed Inform ; 45(3): 522-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22490168

RESUMO

A method for automated location of shape differences in diseased anatomical structures via high resolution biomedical atlases annotated with labels from formal ontologies is described. In particular, a high resolution magnetic resonance image of the myocardium of the human left ventricle was segmented and annotated with structural terms from an extracted subset of the Foundational Model of Anatomy ontology. The atlas was registered to the end systole template of a previous study of left ventricular remodeling in cardiomyopathy using a diffeomorphic registration algorithm. The previous study used thresholding and visual inspection to locate a region of statistical significance which distinguished patients with ischemic cardiomyopathy from those with nonischemic cardiomyopathy. Using semantic technologies and the deformed annotated atlas, this location was more precisely found. Although this study used only a cardiac atlas, it provides a proof-of-concept that ontologically labeled biomedical atlases of any anatomical structure can be used to automate location-based inferences.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Modelos Cardiovasculares , Reconhecimento Automatizado de Padrão , Algoritmos , Bases de Dados Factuais , Humanos , Infarto do Miocárdio/diagnóstico por imagem , Radiografia , Software , Disfunção Ventricular Esquerda/diagnóstico por imagem
11.
J Biomed Inform ; 45(5): 975-91, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22531831

RESUMO

We introduce two concepts: the Query Web as a layer of interconnected queries over the document web and the semantic web, and a Query Web Integrator and Manager (QI) that enables the Query Web to evolve. QI permits users to write, save and reuse queries over any web accessible source, including other queries saved in other installations of QI. The saved queries may be in any language (e.g. SPARQL, XQuery); the only condition for interconnection is that the queries return their results in some form of XML. This condition allows queries to chain off each other, and to be written in whatever language is appropriate for the task. We illustrate the potential use of QI for several biomedical use cases, including ontology view generation using a combination of graph-based and logical approaches, value set generation for clinical data management, image annotation using terminology obtained from an ontology web service, ontology-driven brain imaging data integration, small-scale clinical data integration, and wider-scale clinical data integration. Such use cases illustrate the current range of applications of QI and lead us to speculate about the potential evolution from smaller groups of interconnected queries into a larger query network that layers over the document and semantic web. The resulting Query Web could greatly aid researchers and others who now have to manually navigate through multiple information sources in order to answer specific questions.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Internet , Ferramenta de Busca , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Mapeamento Encefálico , Bases de Dados como Assunto , Humanos , Modelos Teóricos , Semântica , Interface Usuário-Computador
12.
J Biomed Inform ; 44 Suppl 1: S103-S108, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21651992

RESUMO

Amid researchers' growing need for study data management, the CTSA-funded Institute for Translational Health Sciences developed an approach to combine technical and scientific resources with small-scale clinical trials researchers in order to make Electronic Data Capture more efficient. In a 2-year qualitative evaluation we found that the importance of ease of use and training materials outweighed number of features and functionality. EDC systems we evaluated were Catalyst Web Tools, OpenClinica and REDCap. We also found that two other systems, Caisis and LabKey, did not meet the specific user needs of the study group.


Assuntos
Ensaios Clínicos como Assunto , Informática Médica/métodos , Coleta de Dados , Humanos , Internet
13.
Dev Biol ; 355(2): 175-82, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21458441

RESUMO

The FaceBase Consortium consists of ten interlinked research and technology projects whose goal is to generate craniofacial research data and technology for use by the research community through a central data management and integrated bioinformatics hub. Funded by the National Institute of Dental and Craniofacial Research (NIDCR) and currently focused on studying the development of the middle region of the face, the Consortium will produce comprehensive datasets of global gene expression patterns, regulatory elements and sequencing; will generate anatomical and molecular atlases; will provide human normative facial data and other phenotypes; conduct follow up studies of a completed genome-wide association study; generate independent data on the genetics of craniofacial development, build repositories of animal models and of human samples and data for community access and analysis; and will develop software tools and animal models for analyzing and functionally testing and integrating these data. The FaceBase website (http://www.facebase.org) will serve as a web home for these efforts, providing interactive tools for exploring these datasets, together with discussion forums and other services to support and foster collaboration within the craniofacial research community.


Assuntos
Biologia Computacional/métodos , Bases de Dados Factuais , Face/embriologia , Perfilação da Expressão Gênica , Pesquisa , Crânio/embriologia , Humanos , Software
14.
Artigo em Inglês | MEDLINE | ID: mdl-20725521

RESUMO

The annotation of functional neuroimaging results for data sharing and re-use is particularly challenging, due to the diversity of terminologies of neuroanatomical structures and cortical parcellation schemes. To address this challenge, we extended the Foundational Model of Anatomy Ontology (FMA) to include cytoarchitectural, Brodmann area labels, and a morphological cortical labeling scheme (e.g., the part of Brodmann area 6 in the left precentral gyrus). This representation was also used to augment the neuroanatomical axis of RadLex, the ontology for clinical imaging. The resulting neuroanatomical ontology contains explicit relationships indicating which brain regions are "part of" which other regions, across cytoarchitectural and morphological labeling schemas. We annotated a large functional neuroimaging dataset with terms from the ontology and applied a reasoning engine to analyze this dataset in conjunction with the ontology, and achieved successful inferences from the most specific level (e.g., how many subjects showed activation in a subpart of the middle frontal gyrus) to more general (how many activations were found in areas connected via a known white matter tract?). In summary, we have produced a neuroanatomical ontology that harmonizes several different terminologies of neuroanatomical structures and cortical parcellation schemes. This neuroanatomical ontology is publicly available as a view of FMA at the Bioportal website. The ontological encoding of anatomic knowledge can be exploited by computer reasoning engines to make inferences about neuroanatomical relationships described in imaging datasets using different terminologies. This approach could ultimately enable knowledge discovery from large, distributed fMRI studies or medical record mining.

15.
Brain Lang ; 115(2): 101-12, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20452661

RESUMO

This study reports on the characteristics and distribution of naming errors of patients undergoing cortical stimulation mapping (CSM). During the procedure, electrical stimulation is used to induce temporary functional lesions and locate 'essential' language areas for preservation. Under stimulation, patients are shown slides of common objects and asked to name them. Cortical stimulation can lead to a variety of naming errors. In the present study, we aggregate errors across patients to examine the neuroanatomical correlates and linguistic characteristics of six common errors: semantic paraphasias, circumlocutions, phonological paraphasias, neologisms, performance errors, and no-response errors. Aiding analysis, we relied on a suite of web-based querying and imaging tools that enabled the summative mapping of normalized stimulation sites. Errors were visualized and analyzed by type and location. We provide descriptive statistics to characterize the commonality of errors across patients and location. The errors observed suggest a widely distributed and heterogeneous cortical network that gives rise to differential patterning of paraphasic errors. Data are discussed in relation to emerging models of language representation that honor distinctions between frontal, parietal, and posterior temporal dorsal implementation systems and ventral-temporal lexical semantic and phonological storage and assembly regions; the latter of which may participate both in language comprehension and production.


Assuntos
Afasia/patologia , Mapeamento Encefálico/métodos , Córtex Cerebral/patologia , Epilepsia do Lobo Temporal/patologia , Semântica , Adolescente , Adulto , Estimulação Elétrica/métodos , Feminino , Humanos , Idioma , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Vias Neurais/patologia , Neuroanatomia/métodos , Adulto Jovem
16.
J Biomed Inform ; 42(3): 540-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19248842

RESUMO

Biomedical ontologies are envisioned to be usable in a range of research and clinical applications. The requirements for such uses include formal consistency, adequacy of coverage, and possibly other domain specific constraints. In this report we describe a case study that illustrates how application specific requirements may be used to identify modeling problems as well as data entry errors in ontology building and evolution. We have begun a project to use the UW Foundational Model of Anatomy (FMA) in a clinical application in radiation therapy planning. This application focuses mainly (but not exclusively) on the representation of the lymphatic system in the FMA, in order to predict the spread of tumor cells to regional metastatic sites. This application requires that the downstream relations associated with lymphatic system components must only be to other lymphatic chains or vessels, must be at the appropriate level of granularity, and that every path through the lymphatic system must terminate at one of the two well known trunks of the lymphatic system. It is possible through a programmable query interface to the FMA to write small programs that systematically audit the FMA for compliance with these constraints. We report on the design of some of these programs, and the results we obtained by applying them to the lymphatic system. The algorithms and approach are generalizable to other network organ systems in the FMA such as arteries and veins. In addition to illustrating exact constraint checking methods, this work illustrates how the details of an application may reflect back a requirement to revise the design of the ontology itself.


Assuntos
Anatomia , Terminologia como Assunto
17.
Front Neuroinform ; 3: 2, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19198662

RESUMO

This paper addresses the need for relatively small groups of collaborating investigators to integrate distributed and heterogeneous data about the brain. Although various national efforts facilitate large-scale data sharing, these approaches are generally too "heavyweight" for individual or small groups of investigators, with the result that most data sharing among collaborators continues to be ad hoc. Our approach to this problem is to create a "lightweight" distributed query architecture, in which data sources are accessible via web services that accept arbitrary query languages but return XML results. A Distributed XQuery Processor (DXQP) accepts distributed XQueries in which subqueries are shipped to the remote data sources to be executed, with the resulting XML integrated by DXQP. A web-based application called DXBrain accesses DXQP, allowing a user to create, save and execute distributed XQueries, and to view the results in various formats including a 3-D brain visualization. Example results are presented using distributed brain mapping data sources obtained in studies of language organization in the brain, but any other XML source could be included. The advantage of this approach is that it is very easy to add and query a new source, the tradeoff being that the user needs to understand XQuery and the schemata of the underlying sources. For small numbers of known sources this burden is not onerous for a knowledgeable user, leading to the conclusion that the system helps to fill the gap between ad hoc local methods and large scale but complex national data sharing efforts.

18.
AMIA Annu Symp Proc ; : 161-5, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18999137

RESUMO

OWL, the Web Ontology Language, provides syntax and semantics for representing knowledge for the semantic web. Many of the constructs of OWL have a basis in the field of description logics. While the formal underpinnings of description logics have lead to a highly computable language, it has come at a cognitive cost. OWL ontologies are often unintuitive to readers lacking a strong logic background. In this work we describe GLEEN, a regular path expression library, which extends the RDF query language SparQL to support complex path expressions over OWL and other RDF-based ontologies. We illustrate the utility of GLEEN by showing how it can be used in a query-based approach to defining simpler, more intuitive views of OWL ontologies. In particular we show how relatively simple GLEEN-enhanced SparQL queries can create views of the OWL version of the NCI Thesaurus that match the views generated by the web-based NCI browser.


Assuntos
Inteligência Artificial , Armazenamento e Recuperação da Informação/métodos , Processamento de Linguagem Natural , Reconhecimento Automatizado de Padrão/métodos , Semântica , Interface Usuário-Computador , Vocabulário Controlado
19.
AMIA Annu Symp Proc ; : 672-6, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18999289

RESUMO

The semantic web provides the possiblity of linking together large numbers of biomedical ontologies. Unfortunately, many of the biomedical ontologies that have been developed are domain-specific and do not share a common structure that will allow them to be easily combined. Reference ontologies provide the necessary ontological framework for linking together these smaller, specialized ontologies. We present extensions to the semantic web query language SparQL that will allow researchers to develop application ontologies that are derived from reference ontologies. We have modified the ARQ query processor to support subqueries, recursive subqueries, and Skolem functions for node creation. We demonstrate the utility of these extensions by deriving an application ontology from the Foundational Model of Anatomy.


Assuntos
Algoritmos , Bases de Dados Factuais , Armazenamento e Recuperação da Informação/métodos , Processamento de Linguagem Natural , Reconhecimento Automatizado de Padrão/métodos , Semântica , Software , Descritores , Inteligência Artificial , Estados Unidos
20.
AMIA Annu Symp Proc ; : 946, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18998840

RESUMO

Recent advances in semantic web technologies now provide the methodology for efficient and adaptable deployment of ontology support to biomedical applications for data annotation and integration.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Dicionários Médicos como Assunto , Armazenamento e Recuperação da Informação/métodos , Internet , Semântica , Interface Usuário-Computador , Processamento de Linguagem Natural , Integração de Sistemas , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA