Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
J Neurosurg ; : 1-9, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701517

RESUMO

OBJECTIVE: It has been shown that optical coherence tomography (OCT) can identify brain tumor tissue and potentially be used for intraoperative margin diagnostics. However, there is limited evidence on its use in human in vivo settings, particularly in terms of its applicability and accuracy of residual brain tumor detection (RTD). For this reason, a microscope-integrated OCT system was examined to determine in vivo feasibility of RTD after resection with automated scan analysis. METHODS: Healthy and diseased brain was 3D scanned at the resection edge in 18 brain tumor patients and investigated for its informative value in regard to intraoperative tissue classification. Biopsies were taken at these locations and labeled by a neuropathologist for further analysis as ground truth. Optical OCT properties were obtained, compared, and used for separation with machine learning. In addition, two artificial intelligence-assisted methods were utilized for scan classification, and all approaches were examined for RTD accuracy and compared to standard techniques. RESULTS: In vivo OCT tissue scanning was feasible and easily integrable into the surgical workflow. Measured backscattered light signal intensity, signal attenuation, and signal homogeneity were significantly distinctive in the comparison of scanned white matter to increasing levels of scanned tumor infiltration (p < 0.001) and achieved high values of accuracy (85%) for the detection of diseased brain in the tumor margin with support vector machine separation. A neuronal network approach achieved 82% accuracy and an autoencoder approach 85% accuracy in the detection of diseased brain in the tumor margin. Differentiating cortical gray matter from tumor tissue was not technically feasible in vivo. CONCLUSIONS: In vivo OCT scanning of the human brain has been shown to contain significant value for intraoperative RTD, supporting what has previously been discussed for ex vivo OCT brain tumor scanning, with the perspective of complementing current intraoperative methods for this purpose, especially when deciding to withdraw from further resection toward the end of the surgery.

2.
Transl Vis Sci Technol ; 13(4): 26, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38639930

RESUMO

Purpose: Subdamaging thermal retinal laser therapy has the potential to induce regenerative stimuli in retinal diseases, but validated dosimetry is missing. Real-time optoacoustic temperature determination and control could close this gap. This study investigates a first in vivo application. Methods: Two iterations of a control module that were optically coupled in between a continuous-wave commercial laser source and a commercial slit lamp were evaluated on chinchilla rabbits. The module allows extraction of the temperature rise in real time and can control the power of the therapy laser such that a predefined temperature rise at the retina is quickly achieved and held constant. Irradiations with aim temperatures from 45°C to 69°C were performed on a diameter of 200 µm and a heating time of 100 ms. Results: We analyzed 424 temperature-guided irradiations in nine eyes of five rabbits. The mean difference between the measured and aim temperature was -0.04°C ± 0.98°C. The following ED50 values for visibility thresholds could be determined: 58.6°C for funduscopic visibility, 57.7°C for fluorescein angiography, and 57.0°C for OCT. In all measurements, the correlation of tissue effect was higher to the temperature than to the average heating laser power used. Conclusions: The system was able to reliably perform temperature-guided irradiations, which allowed for better tissue effect control than simple power control. This approach could enhance the accuracy, safety, and reproducibility of thermal stimulating laser therapy. Translational Relevance: This study is a bridge between preclinical ex vivo experiments and a pilot clinical study.


Assuntos
Retina , Doenças Retinianas , Coelhos , Animais , Temperatura , Reprodutibilidade dos Testes , Retina/cirurgia , Doenças Retinianas/cirurgia , Angiofluoresceinografia
3.
Artigo em Inglês | MEDLINE | ID: mdl-38587656

RESUMO

PURPOSE: To investigate the sensitivity of fluorescence lifetime imaging ophthalmoscopy (FLIO) to detect retinal laser spots by comparative analysis with other imaging modalities. METHODS: A diode laser with a wavelength of 514 nm was applied with pulse durations of 5.2, 12, 20, and 50 µs. The laser pulse energy was increased so that the visibility of the laser spot by slit-lamp fundus examination (SL) under the irradiator's observation covers from the subvisible to visible range immediately after irradiation. The irradiated areas were then examined by fundus color photography (FC), optical coherence tomography (OCT), fundus autofluorescence (AF), FLIO, and fluorescein angiography (FA). The visibility of a total of over 2200 laser spots was evaluated by two independent researchers, and effective dose (ED) 50 laser pulse energy values were calculated for each imaging modality and compared. RESULTS: Among examined modalities, FA showed the lowest mean of ED50 energy value and SL the highest, that is, they had the highest and lowest sensitivity to detect retinal pigment epithalium (RPE)-selective laser spots, respectively. FLIO also detected spots significantly more sensitively than SL at most laser pulse durations and was not significantly inferior to FA. AF was also often more sensitive than SL, but the difference was slightly less significant than FLIO. CONCLUSION: Considering its high sensitivity in detecting laser spots and previously reported potential of indicating local wound healing and metabolic changes around laser spots, FLIO may be useful as a non-invasive monitoring tool during and after minimally invasive retinal laser treatment.

4.
Sensors (Basel) ; 24(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38610317

RESUMO

Differential photoacoustic spectroscopy (DPAS) cells are usually excited on the first longitudinal ring mode, with a microphone situated in the middle of each of the two resonator tubes. However, it is known from other photoacoustic spectroscopy cell designs that connecting the microphones via a capillary can lead to signal enhancement. By means of finite element method (FEM) simulations, we compared such a photoacoustic spectroscopy (PAS) cell with a capillary to a DPAS cell with a capillary attached to each of the two resonators and showed that the behavior of both systems is qualitatively the same: In both the PAS and the DPAS cell, in-phase and anti-phase oscillations of the coupled system (resonator-capillary) can be excited. In the DPAS cell, capillaries of suitable length also increase the pressure signal at the microphones according to the FEM simulations. For different capillary diameters (1.2 mm/1.7 mm/2.2 mm), the respective optimal capillary length (36-37.5 mm) and signal amplification was determined (94%, 70%, 53%). According to the results of these FEM simulations, a significant increase in sensitivity can, therefore, also be achieved in DPAS cells by expanding them with thin tubes leading to the microphones.

5.
Biomed Opt Express ; 15(2): 1038-1058, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38404346

RESUMO

During neuro-oncologic surgery, phase-sensitive optical coherence elastography (OCE) can be valuable for distinguishing between healthy and diseased tissue. However, the phase unwrapping process required to retrieve the original phase signal is a challenging and critical task. To address this issue, we demonstrate a one-dimensional unwrapping algorithm that recovers the phase signal from a 3.2 MHz OCE system. With a processing time of approximately 0.11 s per frame on the GPU, multiple 2π wraps are detected and corrected. By utilizing this approach, exact and reproducible information on tissue deformation can be obtained with pixel accuracy over the entire acquisition time. Measurements of brain tumor-mimicking phantoms and human ex vivo brain tumor samples verified the algorithm's reliability. The tissue samples were subjected to a 200 ms short air pulse. A correlation with histological findings confirmed the algorithm's dependability.

6.
Acta Neurochir (Wien) ; 166(1): 102, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396016

RESUMO

BACKGROUND: The diagnosis of brain tumor is a serious event for the affected patient. Surgical resection is a crucial part in the treatment of brain tumors. However, the distinction between tumor and brain tissue can be difficult, even for experienced neurosurgeons. This is especially true in the case of gliomas. In this project we examined whether the biomechanical parameters elasticity and stress relaxation behavior are suitable as additional differentiation criteria between tumorous (glioblastoma multiforme; glioblastoma, IDH-wildtype; GBM) and non-tumorous, peritumoral tissue. METHODS: Indentation measurements were used to examine non-tumorous human brain tissue and GBM samples for the biomechanical properties of elasticity and stress-relaxation behavior. The results of these measurements were then used in a classification algorithm (Logistic Regression) to distinguish between tumor and non-tumor. RESULTS: Differences could be found in elasticity spread and relaxation behavior between tumorous and non-tumorous tissue. Classification was successful with a sensitivity/recall of 83% (sd = 12%) and a precision of 85% (sd = 9%) for detecting tumorous tissue. CONCLUSION: The findings imply that the data on mechanical characteristics, with particular attention to stress relaxation behavior, can serve as an extra element in differentiating tumorous brain tissue from non-tumorous brain tissue.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , Glioma/patologia , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Algoritmos
7.
Transl Vis Sci Technol ; 13(1): 24, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38285461

RESUMO

Purpose: To investigate fluorescence lifetime of mouse models of age-related macular degeneration (AMD) by fluorescence lifetime imaging ophthalmoscopy (FLIO). Methods: Two AMD mouse models, apolipoprotein E knockout (ApoE-/-) mice and NF-E2-related factor-2 knockout (Nrf2-/-) mice, and their wild-type mice underwent monthly ophthalmic examinations including FLIO from 3 months of age. After euthanasia at the age of 6 or 11 months, blood plasma was collected to determine total antioxidant capacity and eyes were enucleated for Oil red O (ORO) lipid staining of chorioretinal tissue. Results: In FLIO, the mean fluorescence lifetime (τm) of wild type shortened with age in both spectral channels. In short spectral channel, τm shortening was observed in both AMD models as well, but its rate was more pronounced in ApoE-/- mice and significantly different from the other strains as months of age progressed. In contrast, in long spectral channel, both model strains showed completely opposite trends, with τm becoming shorter in ApoE-/- and longer in Nrf2-/- mice than the others. Oil red O staining at Bruch's membrane was significantly stronger in ApoE-/- mice at 11 months than the other strains. Plasma total antioxidant capacity was highest in ApoE-/- mice at both 6 and 11 months. Conclusions: The two AMD mouse models exhibited largely different fundus fluorescence lifetime, which might be related to the different systemic metabolic state. FLIO might be able to indicate different metabolic states of eyes at risk for AMD. Translational Relevance: This animal study may provide new insights into the relationship between early AMD-associated metabolic changes and FLIO findings.


Assuntos
Antioxidantes , Compostos Azo , Degeneração Macular , Camundongos , Animais , Fator 2 Relacionado a NF-E2 , Camundongos Knockout para ApoE , Oftalmoscopia , Degeneração Macular/genética , Modelos Animais de Doenças , Fundo de Olho , Apolipoproteínas E
8.
Front Oncol ; 13: 1151149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139150

RESUMO

Purpose: In brain tumor surgery, it is crucial to achieve complete tumor resection while conserving adjacent noncancerous brain tissue. Several groups have demonstrated that optical coherence tomography (OCT) has the potential of identifying tumorous brain tissue. However, there is little evidence on human in vivo application of this technology, especially regarding applicability and accuracy of residual tumor detection (RTD). In this study, we execute a systematic analysis of a microscope integrated OCT-system for this purpose. Experimental design: Multiple 3-dimensional in vivo OCT-scans were taken at protocol-defined sites at the resection edge in 21 brain tumor patients. The system was evaluated for its intraoperative applicability. Tissue biopsies were obtained at these locations, labeled by a neuropathologist and used as ground truth for further analysis. OCT-scans were visually assessed with a qualitative classifier, optical OCT-properties were obtained and two artificial intelligence (AI)-assisted methods were used for automated scan classification. All approaches were investigated for accuracy of RTD and compared to common techniques. Results: Visual OCT-scan classification correlated well with histopathological findings. Classification with measured OCT image-properties achieved a balanced accuracy of 85%. A neuronal network approach for scan feature recognition achieved 82% and an auto-encoder approach 85% balanced accuracy. Overall applicability showed need for improvement. Conclusion: Contactless in vivo OCT scanning has shown to achieve high values of accuracy for RTD, supporting what has well been described for ex vivo OCT brain tumor scanning, complementing current intraoperative techniques and even exceeding them in accuracy, while not yet in applicability.

9.
Life (Basel) ; 13(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36983925

RESUMO

The purpose of this study was to compare the safety and efficacy of selective retina therapy (SRT) combined with the intravitreal injection of ranibizumab (IVR) in patients with macular edema (ME) secondary to branch retinal vein occlusion (BRVO). This trial was a 12-month single-center, randomized, single-masked prospective study. Eligible patients were randomized (1:1) to IVR and SRT (IVR + SRT group), or IVR and sham SRT (IVR + sham group). After the initial IVR, all participants received ME resolution criteria-driven pro re nata treatment. SRT or sham SRT was always applied one day after IVR. The primary outcome measure of this study was the mean change in central macular thickness (CMT) from baseline, and the secondary outcome measures were the mean change in visual acuity from baseline and the number of IVR treatments at a 52-week follow-up. Thirteen patients were in the IVR + SRT group, and 11 were in the IVR + sham group. Compared to the baseline, mean CMT and BCVA improved significantly after 52 weeks in both groups, with no significant difference between the two groups. The mean number of IVR was 2.85 ± 1.52 in the IVR + SRT group and 4.73 ± 2.33 in the IVR + sham group at the 52-week follow-up, with a significant difference between the two groups (p < 0.05). IVR combined with SRT may significantly decrease the number of IVR treatments while maintaining the visual and anatomical improvement effect of IVR monotherapy.

10.
Lasers Med Sci ; 38(1): 94, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973553

RESUMO

Due to wavelength-specific water absorption, infrared lasers like the thulium laser emitting at 1940 nm wavelength proved to be suitable for coagulation in neurosurgery. Commonly bipolar forceps used for intraoperative haemostasis can cause mechanical and thermal tissue damage, whilst thulium laser can provide a tissue-gentle haemostasis through non-contact coagulation. The aim of this work is a less-damaging blood vessel coagulation by pulsed thulium laser radiation in comparison to standard bipolar forceps haemostasis. Ex vivo porcine blood vessels in brain tissue (0.34 ± 0.20 mm diameter) were irradiated in non-contact with a thulium laser in pulsed mode (1940 nm wavelength, 15 W power, 100-500 ms pulse duration), with a CO2 gas flow provided simultaneously at the distal fibre tip (5 L/min). In comparison, a bipolar forceps was used at various power levels (20-60 W). Tissue coagulation and ablation were evaluated by white light images and vessel occlusion was visualised by optical coherence tomography (OCT) B-scans at a wavelength of 1060 nm. Coagulation efficiency was calculated by means of the quotient of the difference between the coagulation and ablation radius to the coagulation radius. Pulsed laser application achieved blood vessel occlusion rate of 92% at low pulse duration of 200 ms with no occurrence of ablation (coagulation efficiency 100%). Bipolar forceps showed an occlusion rate of 100%, however resulted in tissue ablation. Tissue ablation depth with laser application is limited to 40 µm and by a factor of 10 less traumatising than with bipolar forceps. Pulsed thulium laser radiation achieved blood vessel haemostasis up to 0.3 mm in diameter without tissue ablation and has proven to be a tissue-gentle method compared to bipolar forceps.


Assuntos
Terapia a Laser , Lasers de Estado Sólido , Neoplasias , Animais , Suínos , Terapia a Laser/métodos , Túlio , Lasers , Instrumentos Cirúrgicos , Hemostasia
11.
Front Oncol ; 12: 896060, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110932

RESUMO

The discrimination of tumor-infiltrated tissue from non-tumorous brain tissue during neurosurgical tumor excision is a major challenge in neurosurgery. It is critical to achieve full tumor removal since it directly correlates with the survival rate of the patient. Optical coherence tomography (OCT) might be an additional imaging method in the field of neurosurgery that enables the classification of different levels of tumor infiltration and non-tumorous tissue. This work investigated two OCT systems with different imaging wavelengths (930 nm/1310 nm) and different resolutions (axial (air): 4.9 µm/16 µm, lateral: 5.2 µm/22 µm) in their ability to identify different levels of tumor infiltration based on freshly excised ex vivo brain samples. A convolutional neural network was used for the classification. For both systems, the neural network could achieve classification accuracies above 91% for discriminating between healthy white matter and highly tumor infiltrated white matter (tumor infiltration >60%) .This work shows that both OCT systems with different optical properties achieve similar results regarding the identification of different stages of brain tumor infiltration.

12.
Life (Basel) ; 12(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36143352

RESUMO

Continuous wave (CW) and microsecond pulse (MP) laser irradiations were compared regarding cell damage and laser-induced temperature rise at retinal pigment epithelium (RPE). The RPE of porcine RPE-choroid-sclera explants was irradiated with a 577 nm laser in CW or MP mode (5% or 15% duty cycle (DC)) for 20 ms or 200 ms at an average laser power of 20−90 mW. Cell viability was investigated with calcein-AM staining. Optoacoustic (OA) technique was employed for temperature measurement during irradiation. For 200 ms irradiation, the dead cell area (DCA) increased linearly (≈1600 µm2/mW) up to the average power of 40 mW for all modes without significant difference. From 50 mW, the increase of DCA of MP-5% significantly dropped to 610 µm2/mW (p < 0.05), likely due to the detected microbubble formation. OA temperature measurement showed a monotonic temperature increase in CW mode and a stepwise increase in MP mode, but no significant difference in the average temperature increase at the same average power, consistent with the temperature modeling. In conclusion, there is no difference in the average temperature rise between CW and MP modes at the same average power regardless of DC. At lower DC, however, more caution is required regarding mechanical damage due to microbubble formation.

13.
Biomed Phys Eng Express ; 8(5)2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35858536

RESUMO

Objectives. In laser lithotripsy, a green aiming beam overlying the infrared (IR) treatment radiation gives rise to reflection and fluorescence signals that can be measured via the treatment fiber. While stone autofluorescence is used for target detection, the condition of the fiber can be assessed based on its Fresnel reflection. For good applicability, fluorescence detection of stones should work even when the stone and fiber are not in direct contact. Fiber breakage detection, on the other hand, can be falsified if surfaces located in front of the fiber reflect light from the aiming laser back into it. For both applications, therefore, a fundamental investigation of the dependence of the signal amplitude on the distance between fiber and surface is important.Methods. Calculations of the signal drop of fluorescence or diffuse and specular reflection with increasing fiber distance were performed using ray tracing based on a simple geometric model for different fiber core diameters. Reflection signals from a mirror, diffuse reflector, human calculi, and porcine renal tissue placed in water were measured at varying distances (0-5 mm). For human calculi, fluorescence signals were recorded simultaneously.Results. The calculations showed a linear signal decrease down to ∼60% of the maximum signal (fiber in contact). The distancezat which the signal drops to for example 50% depends linearly on the diameter of the fiber core. For fibers used in lithotripsy and positioned in water,z50%ranges from 0.55 mm (200µm core diameter) to 2.73 mm, (1 mm core diameter). The calculations were in good agreement with the experimental results.Conclusions. The autofluorescence signals of stones can be measured in non-contact mode. Evaluating the Fresnel signal of the end face of the fiber to detect breakage is possible unless the fiber is situated less than some millimeters to reflecting surfaces.


Assuntos
Cálculos , Litotripsia a Laser , Animais , Fluorescência , Humanos , Lasers , Litotripsia a Laser/métodos , Suínos , Água
14.
Phys Med Biol ; 67(13)2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35523170

RESUMO

Identifying tumour infiltration zones during tumour resection in order to excise as much tumour tissue as possible without damaging healthy brain tissue is still a major challenge in neurosurgery. The detection of tumour infiltrated regions so far requires histological analysis of biopsies taken from at expected tumour boundaries. The gold standard for histological analysis is the staining of thin cut specimen and the evaluation by a neuropathologist. This work presents a way to transfer the histological evaluation of a neuropathologist onto optical coherence tomography (OCT) images. OCT is a method suitable for real timein vivoimaging during neurosurgery however the images require processing for the tumour detection. The method demonstrated here enables the creation of a dataset which will be used for supervised learning in order to provide a better visualization of tumour infiltrated areas for the neurosurgeon. The created dataset contains labelled OCT images from two different OCT-systems (wavelength of 930 nm and 1300 nm). OCT images corresponding to the stained histological images were determined by shaping the sample, a controlled cutting process and a rigid transformation process between the OCT volumes based on their topological information. The histological labels were transferred onto the corresponding OCT images through a non-rigid transformation based on shape context features retrieved from the sample outline in the histological image and the OCT image. The accuracy of the registration was determined to be 200 ± 120µm. The resulting dataset consists of 1248 labelled OCT images for each of the two OCT systems.


Assuntos
Encéfalo , Tomografia de Coerência Óptica , Biópsia , Encéfalo/diagnóstico por imagem , Procedimentos Neurocirúrgicos , Coloração e Rotulagem , Tomografia de Coerência Óptica/métodos
15.
Diagnostics (Basel) ; 12(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35204427

RESUMO

Optical coherence tomography (OCT) has been recently suggested as a promising method to obtain in vivo and real-time high-resolution images of tissue structure in brain tumor surgery. This review focuses on the basics of OCT imaging, types of OCT images and currently suggested OCT scanner devices and the results of their application in neurosurgery. OCT can assist in achieving intraoperative precision identification of tumor infiltration within surrounding brain parenchyma by using qualitative or quantitative OCT image analysis of scanned tissue. OCT is able to identify tumorous tissue and blood vessels detection during stereotactic biopsy procedures. The combination of OCT with traditional imaging such as MRI, ultrasound and 5-ALA fluorescence has the potential to increase the safety and accuracy of the resection. OCT can improve the extent of resection by offering the direct visualization of tumor with cellular resolution when using microscopic OCT contact probes. The theranostic implementation of OCT as a part of intelligent optical diagnosis and automated lesion localization and ablation could achieve high precision, automation and intelligence in brain tumor surgery. We present this review for the increase of knowledge and formation of critical opinion in the field of OCT implementation in brain tumor surgery.

16.
Photoacoustics ; 25: 100316, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34926158

RESUMO

OBJECTIVES: Selective Retina Therapy (SRT) uses microbubble formation (MBF) to target retinal pigment epithelium (RPE) cells selectively while sparing the neural retina and the choroid. Intra- and inter-individual variations of RPE pigmentation makes frequent radiant exposure adaption necessary. Since selective RPE cell disintegration is ophthalmoscopically non-visible, MBF detection techniques are useful to control adequate radiant exposures. It was the purpose of this study to evaluate optoacoustically based MBF detection algorithms. METHODS: Fifteen patients suffering from central serous chorioretinopathy and diabetic macula edema were treated with a SRT laser using a wavelength of 527 nm, a pulse duration of 1.7 µs and a pulse energy ramp (15 pulses, 100 Hz repetition rate). An ultrasonic transducer for MBF detection was embedded in a contact lens. RPE damage was verified with fluorescence angiography. RESULTS: An algorithm to detect MBF as an indicator for RPE cell damage was evaluated. Overall, 4646 irradiations were used for algorithm optimization and testing. The tested algorithms were superior to a baseline model. A sensitivity/specificity pair of 0.96/1 was achieved. The few false algorithmic decisions were caused by unevaluable signals. CONCLUSIONS: The algorithm can be used for guidance or automatization of microbubble related treatments like SRT or selective laser trabeculoplasty (SLT).

17.
BMC Ophthalmol ; 21(1): 412, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34847865

RESUMO

BACKGROUND: Selective Retina Therapy (SRT), a photodisruptive micropulsed laser modality that selectively destroys RPE cells followed by regeneration, and Thermal Stimulation of the Retina (TSR), a stimulative photothermal continuous wave laser modality that leads to an instant sublethal temperature increase in RPE cells, have shown therapeutic effects on Age-related Macular Degeneration (AMD) in mice. We investigate the differences between both laser modalities concerning RPE regeneration. METHODS: For PCR array, 6 eyes of murine AMD models, apolipoprotein E and nuclear factor erythroid-derived 2- like 2 knock out mice respectively, were treated by neuroretina-sparing TSR or SRT. Untreated litter mates were controls. Eyes were enucleated either 1 or 7 days after laser treatment. For morphological analysis, porcine RPE/choroid organ cultures underwent the same laser treatment and were examined by calcein vitality staining 1 h and 1, 3 or 5 days after irradiation. RESULTS: TSR did not induce the expression of cell-mediators connected to cell death. SRT induced necrosis associated cytokines as well as inflammation 1 but not 7 days after treatment. Morphologically, 1 h after TSR, there was no cell damage. One and 3 days after TSR, dense chromatin and cell destruction of single cells was seen. Five days after TSR, there were signs of migration and proliferation. In contrast, 1 h after SRT a defined necrotic area within the laser spot was seen. This lesion was closed over days by migration and proliferation of adjacent cells. CONCLUSIONS: SRT induces RPE cell death, followed by regeneration within a few days. It is accompanied by necrosis induced inflammation, RPE proliferation and migration. TSR does not induce immediate RPE cell death; however, migration and mitosis can be seen a few days after laser irradiation, not accompanied by necrosis-associated inflammation. Both might be a therapeutic option for the treatment of AMD.


Assuntos
Lasers de Estado Sólido , Degeneração Macular , Animais , Corioide , Degeneração Macular/terapia , Camundongos , Retina , Epitélio Pigmentado da Retina , Suínos
18.
Opt Lett ; 46(14): 3456-3459, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34264237

RESUMO

Stimulated Raman scattering (SRS) microscopy for biomedical analysis can provide a molecular localization map to infer pathological tissue changes. Compared to spontaneous Raman, SRS achieves much faster imaging speeds at reduced spectral coverage. By targeting spectral features in the information dense fingerprint region, SRS allows fast and reliable imaging. We present time-encoded (TICO) SRS microscopy of unstained head-and-neck biopsies in the fingerprint region with molecular contrast. We combine a Fourier-domain mode-locked (FDML) laser with a master oscillator power amplifier (MOPA) to cover Raman transitions from 1500-1800cm-1. Both lasers are fiber-based and electronically programmable making this fingerprint TICO system robust and reliable. The results of our TICO approach were cross-checked with a spontaneous Raman micro-spectrometer and show good agreement, paving the way toward clinical applications.


Assuntos
Microscopia Óptica não Linear , Faringe , Humanos , Lasers , Microscopia , Análise Espectral Raman
19.
Life (Basel) ; 11(6)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199212

RESUMO

Fluorescence Lifetime (FLT) of intrinsic fluorophores may alter under the change in metabolic state. In this study, the FLT of rabbit retina was investigated in vivo after laser irradiation using fluorescence lifetime imaging ophthalmoscopy (FLIO). The retina of the Chinchilla bastard rabbits was irradiated with a 514 nm diode laser. FLIO, fundus photography, and optical coherence tomography (OCT) were conducted 30 min and 1 to 3 weeks after treatment. After strong coagulation, the FLT at laser spots was significantly elongated immediately after irradiation, conversely shortened after more than a week. Histological examination showed eosinophilic substance and melanin clumping in subretinal space at the coagulation spots older than one week. The FLT was also elongated right around the coagulation spots, which corresponded to the discontinuous ellipsoid zone (EZ) on OCT. This EZ change was recovered after one week, and the FLT became the same level as the surroundings. In addition, there was a region around the laser spot where the FLT was temporarily shorter than the surrounding area. When weak pulse energy was applied to selectively destroy only the RPE, a shortening of the FLT was observed immediately around the laser spot within one week after irradiation. FLIO could serve as a tool to evaluate the structural and metabolic response of the retina to laser treatments.

20.
Sci Rep ; 11(1): 8973, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903643

RESUMO

The purpose of this study was to investigate the factors of clinical outcome of selective retina therapy (SRT) for central serous chorioretinopathy (CSC). This retrospective study included 77 eyes of 77 patients, who were treated with SRT for CSC and observed at least 6 months after the treatment. SRT laser (527 nm, 1.7 µs, 100 Hz) was used for treatment. The mean best-corrected visual acuity (logMAR), central macular thickness (CMT) and central choroidal thickness were changed from baseline to at 6-months follow-up with significant difference. The multivariate analyses found that the rate of change (reduction) in CMT was associated with focal leakage type on fluorescein angiography (FA) (p = 0.03, coefficient 15.26, 95% confidence interval 1.72-28.79) and larger baseline CMT (p < 0.01, coefficient - 0.13, 95% confidence interval - 0.13 to - 0.05). Complete resolution of subretinal fluid was associated with nonsmoking history (p = 0.03, odds ratio 0.276, 95% confidence interval 0.086-0.887) and focal leakage type on FA (p < 0.01, odds ratio 0.136, 95% confidence interval 0.042-0.437). These results may be useful for predicting the therapeutic effectiveness of SRT.


Assuntos
Coriorretinopatia Serosa Central , Angiofluoresceinografia , Terapia a Laser , Líquido Sub-Retiniano/metabolismo , Adulto , Idoso , Coriorretinopatia Serosa Central/diagnóstico por imagem , Coriorretinopatia Serosa Central/metabolismo , Coriorretinopatia Serosa Central/terapia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA