Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
2.
Nucleic Acids Res ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661215

RESUMO

CRISPR-Cas systems can be utilized as programmable-spectrum antimicrobials to combat bacterial infections. However, how CRISPR nucleases perform as antimicrobials across target sites and strains remains poorly explored. Here, we address this knowledge gap by systematically interrogating the use of CRISPR antimicrobials using multidrug-resistant and hypervirulent strains of Klebsiella pneumoniae as models. Comparing different Cas nucleases, DNA-targeting nucleases outperformed RNA-targeting nucleases based on the tested targets. Focusing on AsCas12a that exhibited robust targeting across different strains, we found that the elucidated modes of escape varied widely, restraining opportunities to enhance killing. We also encountered individual guide RNAs yielding different extents of clearance across strains, which were linked to an interplay between improper gRNA folding and strain-specific DNA repair and survival. To explore features that could improve targeting across strains, we performed a genome-wide screen in different K. pneumoniae strains that yielded guide design rules and trained an algorithm for predicting guide efficiency. Finally, we showed that Cas12a antimicrobials can be exploited to eliminate K. pneumoniae when encoded in phagemids delivered by T7-like phages. Altogether, our results highlight the importance of evaluating antimicrobial activity of CRISPR antimicrobials across relevant strains and define critical parameters for efficient CRISPR-based targeting.

3.
Biopreserv Biobank ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686572

RESUMO

Background: Microbial culture collections are valuable repositories for qualified and diverse microorganisms, playing a pivotal role in research, education, innovation, as well as in our response to current and emerging public health and societal challenges. However, such precious holdings, when not integrated in professional biobank infrastructures, may be vulnerable to major risks such as staff retirement, changes in the institutional strategy, or natural disasters. The process of preserving and rescuing "historical" collections can be long and treacherous with a loss of a part of the collection. At the Biological Resource Center of Institut Pasteur, we undertook the challenge of rescuing the dormant legacy fungal collection. Materials and Methods: A total of 64 freeze-dried strains, including yeasts and filamentous fungi, were characterized by using a polyphasic approach combining morphological features and molecular data. We assessed the viability, purity, and authenticity of selected strains isolated from multiple sources and stored for more than 20 years. Results: Our preliminary results show long-term stability of the selected strains and successful qualification in terms of purity and authentication. Moreover, based on the most recent taxonomic revisions, we updated and revised the nomenclature, where applicable. Conclusion: Our findings demonstrated the potential value of reviving historical microbial collections for biobanking and research activities and reassure us about the collection's future reopening.

4.
J Antimicrob Chemother ; 79(5): 968-976, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38497937

RESUMO

BACKGROUND: Evidence-based clinical susceptibility breakpoints have been lacking for antimicrobial agents used for diphtheria. OBJECTIVES: We aimed to evaluate broth microdilution and disc diffusion methods and create a dataset of MIC values and inhibition zone diameters (ZDs) from which breakpoints could be determined. METHODS: We included 400 recent clinical isolates equally distributed by species (Corynebacterium diphtheriae and Corynebacterium ulcerans) and by national surveillance programmes (France and Germany). Non-duplicate toxigenic and non-toxigenic isolates were chosen to enable the inclusion of a diversity of susceptibility levels for the 13 agents tested. Broth microdilution and disc diffusion, using EUCAST methodology for fastidious organisms, were used. RESULTS: The distributions of MIC and ZD values were largely in agreement among methods and countries. Breakpoints to allow categorization of WT isolates as susceptible, i.e. susceptible (S) or susceptible, increased exposure (I) were determined for 12 agents. The data supported a breakpoint for benzylpenicillin and amoxicillin of resistant (R) > 1 mg/L since WT isolates were inhibited by 1 mg/L or less. WT isolates were categorized as I (S ≤ 0.001 mg/L) for benzylpenicillin, emphasizing the need for increased exposure, and S (S ≤ 1 mg/L) for amoxicillin. Erythromycin breakpoints were set at S ≤ 0.06 mg/L and R > 0.06 mg/L. The corresponding ZD breakpoints were determined for all agents except amoxicillin, for which categorization was based on benzylpenicillin results. CONCLUSIONS: This work provided a large set of antimicrobial susceptibility data for C. diphtheriae and C. ulcerans, using a harmonized methodology. The dataset allowed EUCAST and experts in the diphtheria field to develop evidence-based breakpoints in January 2023.


Assuntos
Antibacterianos , Corynebacterium diphtheriae , Corynebacterium , Testes de Sensibilidade Microbiana , Testes de Sensibilidade Microbiana/métodos , Humanos , Corynebacterium/efeitos dos fármacos , Corynebacterium/isolamento & purificação , Antibacterianos/farmacologia , Corynebacterium diphtheriae/efeitos dos fármacos , Corynebacterium diphtheriae/isolamento & purificação , Corynebacterium diphtheriae/genética , Alemanha , Infecções por Corynebacterium/microbiologia , Difteria/microbiologia , França
5.
Microb Genom ; 10(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38376382

RESUMO

The Klebsiella pneumoniae species complex (KpSC) is a major source of nosocomial infections globally with high rates of resistance to antimicrobials. Consequently, there is growing interest in understanding virulence factors and their association with cellular metabolic processes for developing novel anti-KpSC therapeutics. Phenotypic assays have revealed metabolic diversity within the KpSC, but metabolism research has been neglected due to experiments being difficult and cost-intensive. Genome-scale metabolic models (GSMMs) represent a rapid and scalable in silico approach for exploring metabolic diversity, which compile genomic and biochemical data to reconstruct the metabolic network of an organism. Here we use a diverse collection of 507 KpSC isolates, including representatives of globally distributed clinically relevant lineages, to construct the most comprehensive KpSC pan-metabolic model to date, KpSC pan v2. Candidate metabolic reactions were identified using gene orthology to known metabolic genes, prior to manual curation via extensive literature and database searches. The final model comprised a total of 3550 reactions, 2403 genes and can simulate growth on 360 unique substrates. We used KpSC pan v2 as a reference to derive strain-specific GSMMs for all 507 KpSC isolates, and compared these to GSMMs generated using a prior KpSC pan-reference (KpSC pan v1) and two single-strain references. We show that KpSC pan v2 includes a greater proportion of accessory reactions (8.8 %) than KpSC pan v1 (2.5 %). GSMMs derived from KpSC pan v2 also generate more accurate growth predictions, with high median accuracies of 95.4 % (aerobic, n=37 isolates) and 78.8 % (anaerobic, n=36 isolates) for 124 matched carbon substrates. KpSC pan v2 is freely available at https://github.com/kelwyres/KpSC-pan-metabolic-model, representing a valuable resource for the scientific community, both as a source of curated metabolic information and as a reference to derive accurate strain-specific GSMMs. The latter can be used to investigate the relationship between KpSC metabolism and traits of interest, such as reservoirs, epidemiology, drug resistance or virulence, and ultimately to inform novel KpSC control strategies.


Assuntos
Infecção Hospitalar , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Carbono , Bases de Dados Factuais , Genômica , Klebsiella
6.
Microbiol Spectr ; 12(2): e0403622, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38205958

RESUMO

Extensively drug-resistant (XDR) Klebsiella pneumoniae inflict a notable burden on healthcare worldwide. Of specific concern are strains producing carbapenem-hydrolyzing enzymes, as the therapeutic options for these strains are still very limited. Specific sequence types of K. pneumoniae have been noted for their epidemic occurrence globally, but the mechanisms behind the success of specific clones remain unclear. Herein, we have characterized 20 high-risk clones (HiRCs) and 10 non-HiRCs of XDR K. pneumoniae, exploring factors connected to the epidemiological success of some clones. Isolates were subjected to core genome multilocus sequence typing analysis to determine the clonal relationships of the isolates and subsequently characterized with regard to features known to be linked to overall bacterial fitness and virulence. The genomes were analyzed in silico for capsule types, O antigens, virulence factors, antimicrobial resistance genes, prophages, and CRISPR-Cas loci. In vitro growth experiments were conducted to retrieve proxies for absolute and relative fitness for 11 HiRC and 9 non-HiRC isolates selected based on the clonal groups they belonged to, and infections in a Galleria mellonella insect model were used to evaluate the virulence of the isolates in vivo. This study did not find evidence that virulence factors, prophages, CRISPR-Cas loci, or fitness measured in vitro alone would contribute to the global epidemiological success of specific clones of carbapenemase-producing XDR K. pneumoniae. However, this study did find the HiRC group to be more virulent than the non-HiRC group when measured in vivo in a model with G. mellonella. This suggests that the virulence and epidemiological success of certain clones of K. pneumoniae cannot be explained by individual traits investigated in this study and thus warrant further experiments in the future.IMPORTANCEHerein, we explored potential explanations for the successfulness of some epidemic or high-risk clones of carbapenemase-producing Klebsiella pneumoniae. We found differences in mortality in a larva model but found no clear genomic differences in known virulence markers. Most of the research on virulence in K. pneumoniae has been focused on hypervirulent strains, but here, we try to understand differences within the group of highly resistant strains. The results from the larva virulence model could be used to design experiments in higher animals. Moreover, the data could provide further support to a differentiated infection control approach against extensively drug-resistant strains, based on their classification as high-risk clones.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Virulência/genética , Klebsiella pneumoniae/genética , Infecções por Klebsiella/microbiologia , Proteínas de Bactérias/genética , beta-Lactamases/genética , Fatores de Virulência/genética , Larva , Células Clonais , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana
7.
Front Microbiol ; 14: 1264030, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928684

RESUMO

Introduction: Non-baumannii Acinetobacter species are increasingly isolated in the clinical setting and the environment. The aim of the present study was to analyze a genome database of 837 Acinetobacter spp. isolates, which included 798 non-baumannii Acinetobacter genomes, in order to define the concordance of classification and discriminatory power of 7-gene MLST, 53-gene MLST, and single-nucleotide polymorphism (SNPs) phylogenies. Methods: Phylogenies were performed on Pasteur Multilocus Sequence Typing (MLST) or ribosomal Multilocus Sequence Typing (rMLST) concatenated alleles, or SNPs extracted from core genome alignment. Results: The Pasteur MLST scheme was able to identify and genotype 72 species in the Acinetobacter genus, with classification results concordant with the ribosomal MLST scheme. The discriminatory power and genotyping reliability of the Pasteur MLST scheme were assessed in comparison to genome-wide SNP phylogeny on 535 non-baumannii Acinetobacter genomes assigned to Acinetobacter pittii, Acinetobacter nosocomialis, Acinetobacter seifertii, and Acinetobacter lactucae (heterotypic synonym of Acinetobacter dijkshoorniae), which were the most clinically relevant non-baumannii species of the A. baumannii group. The Pasteur MLST and SNP phylogenies were congruent at Robinson-Fould and Matching cluster tests and grouped genomes into four and three clusters in A. pittii, respectively, and one each in A. seifertii. Furthermore, A. lactucae genomes were grouped into one cluster within A. pittii genomes. The SNP phylogeny of A. nosocomialis genomes showed a heterogeneous population and did not correspond to the Pasteur MLST phylogeny, which identified two recombinant clusters. The antimicrobial resistance genes belonging to at least three different antimicrobial classes were identified in 91 isolates assigned to 17 distinct species in the Acinetobacter genus. Moreover, the presence of a class D oxacillinase, which is a naturally occurring enzyme in several Acinetobacter species, was found in 503 isolates assigned to 35 Acinetobacter species. Conclusion: In conclusion, Pasteur MLST phylogeny of non-baumannii Acinetobacter isolates coupled with in silico detection of antimicrobial resistance makes it important to study the population structure and epidemiology of Acinetobacter spp. isolates.

8.
Euro Surveill ; 28(46)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37971662

RESUMO

We describe 10 unlinked cases of Corynebacterium diphtheriae infection (nine cutaneous, one respiratory) in France in 2023 in persons travelling from Guinea, Mali, Senegal, Niger or Nigeria and Central African Republic. Four isolates were toxigenic. Seven genomically unrelated isolates were multidrug-resistant, including a toxigenic respiratory isolate with high-level resistance to macrolides and beta-lactams. The high rates of resistance, including against first-line agents, call for further microbiological investigations to guide clinical management and public health response in ongoing West African outbreaks.


Assuntos
Corynebacterium diphtheriae , Difteria , Humanos , Corynebacterium diphtheriae/genética , Difteria/diagnóstico , Difteria/tratamento farmacológico , Difteria/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , França/epidemiologia , Mali
10.
Res Microbiol ; 174(7): 104113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37572824

RESUMO

The Corynebacterium diphtheriae species complex comprises seven bacterial species, including Corynebacterium ulcerans, a zoonotic pathogen from multiple animal species. In this work, we characterise phenotypically and genotypically isolates belonging to two C. ulcerans lineages. Results from phylogenetic analyses, in silico DNA-DNA hybridization (DDH) and MALDI-TOF spectra differentiate lineage 2 from C. ulcerans lineage 1, which, together with their distinct transmission dynamics (probable human-to-human vs animal-to-human), indicates that lineage 2 is a separate Corynebacterium species, which we propose to name Corynebacterium ramonii. This species is of particular medical interest considering that its human-to-human transmission is likely, and that some C. ramonii isolates carry the diphtheria toxin gene.

11.
Sci Rep ; 13(1): 10957, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414963

RESUMO

Increasing reports on K. pneumoniae strains with antimicrobial resistance and virulence traits from food and farm animals are raising concerns about the potential role of Klebsiella spp. as a foodborne pathogen. This study aimed to report and characterize Klebsiella spp. isolates from two artisanal ready-to-eat food (soft cheese and salami) producing facilities, and to track similar genotypes in different ecological niches. Over 1170 samples were collected during the whole production chain of different food batches. The overall Klebsiella prevalence was 6%. Strains were classified into the three Klebsiella species complexes: K. pneumoniae (KpSC, n = 17), K. oxytoca (KoSC, n = 38) and K. planticola (KplaSC, n = 18). Despite high genetic diversity we found in terms of known and new sequence types (STs), core genome phylogeny revealed clonal strains persisting in the same processing setting for over 14 months, isolated from the environment, raw materials and end-products. Strains showed a natural antimicrobial resistance phenotype-genotype. K. pneumoniae strains showed the highest virulence potential, with sequence types ST4242 and ST107 strains carrying yersiniabactin ybt16 and aerobactin iuc3. The latter was detected in all K. pneumoniae from salami and was located on a large conjugative plasmid highly similar (97% identity) to iuc3+ plasmids from human and pig strains circulating in nearby regions of Italy. While identical genotypes may persist along the whole food production process, different genotypes from distinct sources in the same facility shared an iuc3-plasmid. Surveillance in the food chain will be crucial to obtain a more comprehensive picture of the circulation of Klebsiella strains with pathogenic potential.


Assuntos
Infecções por Klebsiella , Klebsiella , Humanos , Animais , Suínos , Klebsiella/genética , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae , Plasmídeos , Genômica , Klebsiella oxytoca , Antibacterianos/farmacologia , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
12.
Emerg Infect Dis ; 29(8): 1630-1633, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486209

RESUMO

Clinical, epidemiologic, and microbiologic analyses revealed emergence of 26 cases of Corynebacterium diphtheriae species complex infections on Réunion Island, France, during 2015-2020. Isolates were genetically diverse, indicating circulation and local transmission of several diphtheria sublineages. Clinicians should remain aware of the risk for diphtheria and improve diagnostic methods and patient management.


Assuntos
Infecções por Corynebacterium , Corynebacterium diphtheriae , Difteria , Humanos , Difteria/microbiologia , Toxina Diftérica , Infecções por Corynebacterium/microbiologia , Reunião/epidemiologia , Corynebacterium , França/epidemiologia
13.
Microbiol Spectr ; 11(4): e0481222, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37338376

RESUMO

Klebsiella pneumoniae (Kp), a human gut colonizer and opportunistic pathogen, is a major contributor to the global burden of antimicrobial resistance. Virulent bacteriophages represent promising agents for decolonization and therapy. However, the majority of anti-Kp phages that have been isolated thus far are highly specific to unique capsular types (anti-K phages), which is a major limitation to phage therapy prospects due to the highly polymorphic capsule of Kp. Here, we report on an original anti-Kp phage isolation strategy, using capsule-deficient Kp mutants as hosts (anti-Kd phages). We show that anti-Kd phages have a broad host range, as the majority are able to infect noncapsulated mutants of multiple genetic sublineages and O-types. Additionally, anti-Kd phages induce a lower rate of resistance emergence in vitro and provide increased killing efficiency when in combination with anti-K phages. In vivo, anti-Kd phages are able to replicate in mouse guts colonized with a capsulated Kp strain, suggesting the presence of noncapsulated Kp subpopulations. The original strategy proposed here represents a promising avenue that circumvents the Kp capsule host restriction barrier, offering promise for therapeutic development. IMPORTANCE Klebsiella pneumoniae (Kp) is an ecologically generalist bacterium as well as an opportunistic pathogen that is responsible for hospital-acquired infections and a major contributor to the global burden of antimicrobial resistance. In the last decades, limited advances have been made in the use of virulent phages as alternatives or complements to antibiotics that are used to treat Kp infections. This work demonstrates the potential value of an anti-Klebsiella phage isolation strategy that addresses the issue of the narrow host range of anti-K phages. Anti-Kd phages may be active in infection sites in which capsule expression is intermittent or repressed or in combination with anti-K phages, which often induce the loss of capsule in escape mutants.


Assuntos
Bacteriófagos , Infecções por Klebsiella , Animais , Humanos , Camundongos , Klebsiella pneumoniae/genética , Bacteriófagos/genética , Especificidade de Hospedeiro , Antibacterianos/farmacologia , Klebsiella , Infecções por Klebsiella/terapia , Infecções por Klebsiella/microbiologia
14.
Microbes Infect ; 25(7): 105152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37245862

RESUMO

INTRODUCTION: Bordetella pertussis still circulates worldwide despite vaccination. Fimbriae are components of some acellular pertussis vaccines. Population fluctuations of B. pertussis fimbrial serotypes (FIM2 and FIM3) are observed, and fim3 alleles (fim3-1 [clade 1] and fim3-2 [clade 2]) mark a major phylogenetic subdivision of B. pertussis. OBJECTIVES: To compare microbiological characteristics and expressed protein profiles between fimbrial serotypes FIM2 and FIM3 and genomic clades. METHODS: A total of 19 isolates were selected. Absolute protein abundance of the main virulence factors, autoagglutination and biofilm formation, bacterial survival in whole blood, induced blood cell cytokine secretion, and global proteome profiles were assessed. RESULTS: Compared to FIM3, FIM2 isolates produced more fimbriae, less cellular pertussis toxin subunit 1 and more biofilm, but auto-agglutinated less. FIM2 isolates had a lower survival rate in cord blood, but induced higher levels of IL-4, IL-8 and IL-1ß secretion. Global proteome comparisons uncovered 15 differentially produced proteins between FIM2 and FIM3 isolates, involved in adhesion and metabolism of metals. FIM3 isolates of clade 2 produced more FIM3 and more biofilm compared to clade 1. CONCLUSION: FIM serotype and fim3 clades are associated with proteomic and other biological differences, which may have implications on pathogenesis and epidemiological emergence.


Assuntos
Bordetella pertussis , Coqueluche , Humanos , Sorogrupo , Proteínas de Fímbrias/genética , Filogenia , Proteoma/genética , Proteômica , Fatores de Virulência de Bordetella/genética , Vacina contra Coqueluche , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo
15.
Lancet Microbe ; 4(5): e349-e357, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37003286

RESUMO

BACKGROUND: Epidemiological surveillance relies on microbial strain typing, which defines genomic relatedness among isolates to identify case clusters and their potential sources. Although predefined thresholds are often applied, known outbreak-specific features such as pathogen mutation rate and duration of source contamination are rarely considered. We aimed to develop a hypothesis-based model that estimates genetic distance thresholds and mutation rates for point-source single-strain food or environmental outbreaks. METHODS: In this modelling study, we developed a forward model to simulate bacterial evolution at a specific mutation rate (µ) over a defined outbreak duration (D). From the distribution of genetic distances expected under the given outbreak parameters and sample isolation dates, we estimated a distance threshold beyond which isolates should not be considered as part of the outbreak. We embedded the model into a Markov Chain Monte Carlo inference framework to estimate the most probable mutation rate or time since source contamination, which are both often imprecisely documented. A simulation study validated the model over realistic durations and mutation rates. We then identified and analysed 16 published datasets of bacterial source-related outbreaks; datasets were included if they were from an identified foodborne outbreak and if whole-genome sequence data and collection dates for the described isolates were available. FINDINGS: Analysis of simulated data validated the accuracy of our framework in both discriminating between outbreak and non-outbreak cases and estimating the parameters D and µ from outbreak data. Precision of estimation was much higher for high values of D and µ. Sensitivity of outbreak cases was always very high, and specificity in detecting non-outbreak cases was poor for low mutation rates. For 14 of the 16 outbreaks, the classification of isolates as being outbreak-related or sporadic is consistent with the original dataset. Four of these outbreaks included outliers, which were correctly classified as being beyond the threshold of exclusion estimated by our model, except for one isolate of outbreak 4. For two outbreaks, both foodborne Listeria monocytogenes, conclusions from our model were discordant with published results: in one outbreak two isolates were classified as outliers by our model and in another outbreak our algorithm separated food samples into one cluster and human samples into another, whereas the isolates were initially grouped together based on epidemiological and genetic evidence. Re-estimated values of the duration of outbreak or mutation rate were largely consistent with a priori defined values. However, in several cases the estimated values were higher and improved the fit with the observed genetic distance distribution, suggesting that early outbreak cases are sometimes missed. INTERPRETATION: We propose here an evolutionary approach to the single-strain conundrum by estimating the genetic threshold and proposing the most probable cluster of cases for a given outbreak, as determined by its particular epidemiological and microbiological properties. This forward model, applicable to foodborne or environmental-source single point case clusters or outbreaks, is useful for epidemiological surveillance and may inform control measures. FUNDING: European Union Horizon 2020 Research and Innovation Programme.


Assuntos
Doenças Transmitidas por Alimentos , Listeria monocytogenes , Listeriose , Humanos , Listeriose/epidemiologia , Listeriose/microbiologia , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/microbiologia , Microbiologia de Alimentos , Listeria monocytogenes/genética , Genômica
16.
Microbiol Spectr ; 11(3): e0461622, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37042786

RESUMO

An increasing number of isolations of Corynebacterium diphtheriae has been observed in recent years in the archipelago of New Caledonia. We aimed to analyze the clinical and microbiological features of samples with C. diphtheriae. All C. diphtheriae isolates identified in New Caledonia from May 2015 to May 2019 were included. For each case, a retrospective consultation of the patient files was conducted. Antimicrobial susceptibility phenotypes, tox gene and diphtheria toxin expression, biovar, and the genomic sequence were determined. Core genome multilocus sequence typing (cgMLST), 7-gene MLST, and search of genes of interest were performed from genomic assemblies. Fifty-eight isolates were included, with a median age of patients of 28 years (range: 9 days to 78 years). Cutaneous origin accounted for 51 of 58 (87.9%) isolates, and C. diphtheriae was associated with Staphylococcus aureus and/or Streptococcus pyogenes in three-quarters of cases. Half of cases came either from the main city Noumea (24%, 14/58) or from the sparsely populated island of Lifou (26%, 15/58). Six tox-positive isolates were identified, associated with recent travel to Vanuatu; 5 of these cases were linked and cgMLST confirmed recent transmission. Two cases of endocarditis in young female patients with a history of rheumatic fever involved tox-negative isolates. The 58 isolates were mostly susceptible to commonly used antibiotics. In particular, no isolate was resistant to the first-line molecules amoxicillin or erythromycin. Resistance to tetracycline was found in a genomic cluster of 17 (29%) isolates, 16 of which carried the tetO gene. There were 13 cgMLST sublineages, most of which were also observed in the neighboring country Australia. Cutaneous infections may harbor nontoxigenic C. diphtheriae isolates, which circulate largely silently in nonspecific wounds. The possible introduction of tox-positive strains from a neighboring island illustrates that diphtheria surveillance should be maintained in New Caledonia, and that immunization in neighboring islands must be improved. Genomic sequencing uncovers how genotypes circulate locally and across neighboring countries. IMPORTANCE The analysis of C. diphtheriae from the tropical archipelago of New Caledonia revealed a high genetic diversity with sublineages that may be linked to Polynesia, Australia, or metropolitan France. Genomic typing allowed confirming or excluding suspected transmission events among cases and contacts. A highly prevalent tetracycline-resistant sublineage harboring the tetO gene was uncovered. Toxigenic isolates were observed from patients returning from Vanuatu, showing the importance of improving vaccination coverage in settings where it is insufficient. This study also illustrates the importance for diphtheria surveillance of the inclusion of isolates from cutaneous sources in addition to respiratory cases, in order to provide a more complete epidemiological picture of the diversity and transmission of C. diphtheriae.


Assuntos
Corynebacterium diphtheriae , Difteria , Feminino , Humanos , Corynebacterium diphtheriae/genética , Difteria/epidemiologia , Difteria/microbiologia , Tipagem de Sequências Multilocus , Nova Caledônia/epidemiologia , Estudos Retrospectivos , Corynebacterium/genética , Genômica , Antibacterianos/farmacologia , Tetraciclina , Inibidores da Síntese de Proteínas
17.
Microbiol Spectr ; 11(3): e0000623, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37022195

RESUMO

Corynebacteria of the diphtheriae species complex (CdSC) can cause diphtheria in humans and have been reported from companion animals. We aimed to describe animal infection cases caused by CdSC isolates. A total of 18,308 animals (dogs, cats, horses, and small mammals) with rhinitis, dermatitis, nonhealing wounds, and otitis were sampled in metropolitan France (August 2019 to August 2021). Data on symptoms, age, breed, and the administrative region of origin were collected. Cultured bacteria were analyzed for tox gene presence, production of the diphtheria toxin, and antimicrobial susceptibility and were genotyped by multilocus sequence typing. Corynebacterium ulcerans was identified in 51 cases, 24 of which were toxigenic. Rhinitis was the most frequent presentation (18/51). Eleven cases (6 cats, 4 dogs, and 1 rat) were monoinfections. Large-breed dogs, especially German shepherds (9 of 28 dogs; P < 0.00001), were overrepresented. C. ulcerans isolates were susceptible to all tested antibiotics. tox-positive C. diphtheriae was identified in 2 horses. Last, 11 infections cases (9 dogs and 2 cats; mostly chronic otitis and 2 sores) had tox-negative C. rouxii, a recently defined species. C. rouxii and C. diphtheriae isolates were susceptible to most antibiotics tested, and almost all of these infections were polymicrobial. Monoinfections with C. ulcerans point toward a primary pathogenic potential to animals. C. ulcerans represents an important zoonotic risk, and C. rouxii may represent a novel zoonotic agent. This case series provides novel clinical and microbiological data on CdSC infections and underlines the need for management of animals and their human contacts. IMPORTANCE We report on the occurrence and clinical and microbiological characteristics of infections caused by members of the CdSC in companion animals. This is the first study based on the systematic analysis of a very large animal cohort (18,308 samples), which provides data on the frequency of CdSC isolates in various types of clinical samples from animals. Awareness of this zoonotic bacterial group remains low among veterinarians and veterinary laboratories, among which it is often considered commensal in animals. We suggest that in the case of CdSC detection in animals, the veterinary laboratories should be encouraged to send the samples to a reference laboratory for analysis of the presence of the tox gene. This work is relevant to the development of guidelines in the case of CdSC infections in animals and underlines their public health relevance given the zoonotic transmission risk.


Assuntos
Corynebacterium diphtheriae , Difteria , Rinite , Humanos , Animais , Cães , Cavalos , Ratos , Difteria/microbiologia , Antibacterianos/farmacologia , França/epidemiologia , Mamíferos
18.
Microb Genom ; 9(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748453

RESUMO

Antimicrobial therapy is important for case management of diphtheria, but knowledge on the emergence of multidrug-resistance in Corynebacterium diphtheriae is scarce. We report on the genomic features of two multidrug-resistant toxigenic isolates sampled from wounds in France 3 years apart. Both isolates were resistant to spiramycin, clindamycin, tetracycline, kanamycin and trimethoprim-sulfamethoxazole. Genes ermX, cmx, aph(3')-Ib, aph(6)-Id, aph(3')-Ic, aadA1, dfrA15, sul1, cmlA, cmlR and tet(33) were clustered in two genomic islands, one consisting of two transposons and one integron, the other being flanked by two IS6100 insertion sequences. One isolate additionally presented mutations in gyrA and rpoB and was resistant to ciprofloxacin and rifampicin. Both isolates belonged to sublineage 453 (SL453), together with 25 isolates from 11 other countries (https://bigsdb.pasteur.fr/diphtheria/). SL453 is a cosmopolitan toxigenic sublineage of C. diphtheriae, a subset of which acquired multidrug resistance. Even though penicillin, amoxicillin and erythromycin, recommended as the first line in the treatment of diphtheria, remain active, surveillance of diphtheria should consider the risk of dissemination of multidrug-resistant strains and their genetic elements.


Assuntos
Corynebacterium diphtheriae , Farmacorresistência Bacteriana Múltipla , Antibacterianos/farmacologia , Corynebacterium diphtheriae/efeitos dos fármacos , Corynebacterium diphtheriae/genética , Ilhas Genômicas
19.
Microb Genom ; 9(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36752781

RESUMO

Oxford Nanopore Technologies (ONT) sequencing has rich potential for genomic epidemiology and public health investigations of bacterial pathogens, particularly in low-resource settings and at the point of care, due to its portability and affordability. However, low base-call accuracy has limited the reliability of ONT data for critical tasks such as antimicrobial resistance (AMR) and virulence gene detection and typing, serotype prediction, and cluster identification. Thus, Illumina sequencing remains the standard for genomic surveillance despite higher capital and running costs. We tested the accuracy of ONT-only assemblies for common applied bacterial genomics tasks (genotyping and cluster detection, implemented via Kleborate, Kaptive and Pathogenwatch), using data from 54 unique Klebsiella pneumoniae isolates. ONT reads generated via MinION with R9.4.1 flowcells were basecalled using three alternative models [Fast, High-accuracy (HAC) and Super-accuracy (SUP), available within ONT's Guppy software], assembled with Flye and polished using Medaka. Accuracy of typing using ONT-only assemblies was compared with that of Illumina-only and hybrid ONT+Illumina assemblies, constructed from the same isolates as reference standards. The most resource-intensive ONT-assembly approach (SUP basecalling, with or without Medaka polishing) performed best, yielding reliable capsule (K) type calls for all strains (100 % exact or best matching locus), reliable multi-locus sequence type (MLST) assignment (98.3 % exact match or single-locus variants), and good detection of acquired AMR genes and mutations (88-100 % correct identification across the various drug classes). Distance-based trees generated from SUP+Medaka assemblies accurately reflected overall genetic relationships between isolates. The definition of outbreak clusters from ONT-only assemblies was problematic due to inflation of SNP counts by high base-call errors. However, ONT data could be reliably used to 'rule out' isolates of distinct lineages from suspected transmission clusters. HAC basecalling + Medaka polishing performed similarly to SUP basecalling without polishing. Therefore, we recommend investing compute resources into basecalling (SUP model), wherever compute resources and time allow, and note that polishing is also worthwhile for improved performance. Overall, our results show that MLST, K type and AMR determinants can be reliably identified with ONT-only R9.4.1 flowcell data. However, cluster detection remains challenging with this technology.


Assuntos
Klebsiella pneumoniae , Nanoporos , Genômica , Klebsiella pneumoniae/genética , Tipagem de Sequências Multilocus , Reprodutibilidade dos Testes , Sequenciamento Completo do Genoma/métodos , Farmacorresistência Bacteriana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA