Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Bioorg Med Chem Lett ; 81: 129130, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36640928

RESUMO

Glucocerebrosidase (GCase) is a lysosomal enzyme encoded by the GBA1 gene, loss of function variants of which cause an autosomal recessive lysosomal storage disorder, Gaucher disease (GD). Heterozygous variants of GBA1 are also known as the strongest common genetic risk factor for Parkinson's disease (PD). Restoration of GCase enzymatic function using a pharmacological chaperone strategy is considered a promising therapeutic approach for PD and GD. We identified compound 4 as a GCase pharmacological chaperone with sub-micromolar activity from a high-throughput screening (HTS) campaign. Compound 4 was further optimised to ER-001230194 (compound 25). ER-001230194 shows improved ADME and physicochemical properties and therefore represents a novel pharmacological chaperone with which to investigate GCase pharmacology further.


Assuntos
Doença de Gaucher , Doença de Parkinson , Humanos , Glucosilceramidase/genética , Mutação , Doença de Parkinson/tratamento farmacológico , Doença de Gaucher/tratamento farmacológico , Lisossomos
2.
SLAS Discov ; 28(3): 73-87, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36608804

RESUMO

Mitochondrial dysfunction and aberrant mitochondrial homeostasis are key aspects of Parkinson's disease (PD) pathophysiology. Mutations in PINK1 and Parkin proteins lead to autosomal recessive PD, suggesting that defective mitochondrial clearance via mitophagy is key in PD etiology. Accelerating the identification and/or removal of dysfunctional mitochondria could therefore provide a disease-modifying approach to treatment. To that end, we performed a high-content phenotypic screen (HCS) of ∼125,000 small molecules to identify compounds that positively modulate mitochondrial accumulation of the PINK1-Parkin-dependent mitophagy initiation marker p-Ser65-Ub in Parkin haploinsufficiency (Parkin +/R275W) human fibroblasts. Following confirmatory counter-screening and orthogonal assays, we selected compounds of interest that enhance mitophagy-related biochemical and functional endpoints in patient-derived fibroblasts. Identification of inhibitors of the ubiquitin-specific peptidase and negative regulator of mitophagy USP30 within our hits further validated our approach. The compounds identified in this work provide a novel starting point for further investigation and optimization.


Assuntos
Mitofagia , Doença de Parkinson , Humanos , Mitofagia/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ubiquitinação/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Mutação , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
4.
Biochem J ; 478(23): 4099-4118, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34704599

RESUMO

Mitochondrial dysfunction is implicated in Parkinson disease (PD). Mutations in Parkin, an E3 ubiquitin ligase, can cause juvenile-onset Parkinsonism, probably through impairment of mitophagy. Inhibition of the de-ubiquitinating enzyme USP30 may counter this effect to enhance mitophagy. Using different tools and cellular approaches, we wanted to independently confirm this claimed role for USP30. Pharmacological characterisation of additional tool compounds that selectively inhibit USP30 are reported. The consequence of USP30 inhibition by these compounds, siRNA knockdown and overexpression of dominant-negative USP30 on the mitophagy pathway in different disease-relevant cellular models was explored. Knockdown and inhibition of USP30 showed increased p-Ser65-ubiquitin levels and mitophagy in neuronal cell models. Furthermore, patient-derived fibroblasts carrying pathogenic mutations in Parkin showed reduced p-Ser65-ubiquitin levels compared with wild-type cells, levels that could be restored using either USP30 inhibitor or dominant-negative USP30 expression. Our data provide additional support for USP30 inhibition as a regulator of the mitophagy pathway.


Assuntos
Proteínas Mitocondriais/metabolismo , Mitofagia , Doença de Parkinson/metabolismo , Proteínas Quinases/metabolismo , Tioléster Hidrolases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular , Fibroblastos , Humanos
5.
J Biol Chem ; 296: 100209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33372898

RESUMO

The genetics and pathophysiology of Parkinson's disease (PD) strongly implicate mitochondria in disease aetiology. Elegant studies over the last two decades have elucidated complex molecular signaling governing the identification and removal of dysfunctional mitochondria from the cell, a process of mitochondrial quality control known as mitophagy. Mitochondrial deficits and specifically reduced mitophagy are evident in both sporadic and familial PD. Mendelian genetics attributes loss-of-function mutations in key mitophagy regulators PINK1 and Parkin to early-onset PD. Pharmacologically enhancing mitophagy and accelerating the removal of damaged mitochondria are of interest for developing a disease-modifying PD therapeutic. However, despite significant understanding of both PINK1-Parkin-dependent and -independent mitochondrial quality control pathways, the therapeutic potential of targeting mitophagy remains to be fully explored. Here, we provide a summary of the genetic evidence supporting the role for mitophagy failure as a pathogenic mechanism in PD. We assess the tractability of mitophagy pathways and prospects for drug discovery and consider intervention points for mitophagy enhancement. We explore the numerous hit molecules beginning to emerge from high-content/high-throughput screening as well as the biochemical and phenotypic assays that enabled these screens. The chemical and biological properties of these reference compounds suggest many could be used to interrogate and perturb mitochondrial biology to validate promising drug targets. Finally, we address key considerations and challenges in achieving preclinical proof-of-concept, including in vivo mitophagy reporter methodologies and disease models, as well as patient stratification and biomarker development for mitochondrial forms of the disease.


Assuntos
Mitofagia , Doença de Parkinson/patologia , Antiparkinsonianos/farmacologia , Descoberta de Drogas , Humanos , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Mutação , Doença de Parkinson/genética , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética
6.
Trends Pharmacol Sci ; 40(1): 50-70, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30527591

RESUMO

Mitochondrial permeability transition, as the consequence of opening of a mitochondrial permeability transition pore (mPTP), is a cellular catastrophe. Initiating bioenergetic collapse and cell death, it has been implicated in the pathophysiology of major human diseases, including neuromuscular diseases of childhood, ischaemia-reperfusion injury, and age-related neurodegenerative disease. Opening of the mPTP represents a major therapeutic target, as it can be mitigated by a number of compounds. However, clinical studies have so far been disappointing. We therefore address the prospects and challenges faced in translating in vitro findings to clinical benefit. We review the role of mPTP opening in disease, discuss recent findings defining the putative structure of the mPTP, and explore strategies to identify novel, clinically useful mPTP inhibitors, highlighting key considerations in the drug discovery process.


Assuntos
Descoberta de Drogas/métodos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Animais , Morte Celular/fisiologia , Criança , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Terapia de Alvo Molecular , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia , Doenças Neuromusculares/tratamento farmacológico , Doenças Neuromusculares/fisiopatologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/fisiopatologia
7.
Front Oncol ; 8: 388, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30338240

RESUMO

Dysregulated mitochondrial function is associated with the pathology of a wide range of diseases including renal disease and cancer. Thus, investigating regulators of mitochondrial function is of particular interest. Previous work has shown that the von Hippel-Lindau tumor suppressor protein (pVHL) regulates mitochondrial biogenesis and respiratory chain function. pVHL is best known as an E3-ubiquitin ligase for the α-subunit of the hypoxia inducible factor (HIF) family of dimeric transcription factors. In normoxia, pVHL recognizes and binds hydroxylated HIF-α (HIF-1α and HIF-2α), targeting it for ubiquitination and proteasomal degradation. In this way, HIF transcriptional activity is tightly controlled at the level of HIF-α protein stability. At least 80% of clear cell renal carcinomas exhibit inactivation of the VHL gene, which leads to HIF-α protein stabilization and constitutive HIF activation. Constitutive HIF activation in renal carcinoma drives tumor progression and metastasis. Reconstitution of wild-type VHL protein (pVHL) in pVHL-defective renal carcinoma cells not only suppresses HIF activation and tumor growth, but also enhances mitochondrial respiratory chain function via mechanisms that are not fully elucidated. Here, we show that pVHL regulates mitochondrial function when re-expressed in pVHL-defective 786O and RCC10 renal carcinoma cells distinct from its regulation of HIF-α. Expression of CHCHD4, a key component of the disulphide relay system (DRS) involved in mitochondrial protein import within the intermembrane space (IMS) was elevated by pVHL re-expression alongside enhanced expression of respiratory chain subunits of complex I (NDUFB10) and complex IV (mtCO-2 and COX IV). These changes correlated with increased oxygen consumption rate (OCR) and dynamic changes in glucose and glutamine metabolism. Knockdown of HIF-2α also led to increased OCR, and elevated expression of CHCHD4, NDUFB10, and COXIV in 786O cells. Expression of pVHL mutant proteins (R200W, N78S, D126N, and S183L) that constitutively stabilize HIF-α but differentially promote glycolytic metabolism, were also found to differentially promote the pVHL-mediated mitochondrial phenotype. Parallel changes in mitochondrial morphology and the mitochondrial network were observed. Our study reveals a new role for pVHL in regulating CHCHD4 and mitochondrial function in renal carcinoma cells.

8.
Biochem Soc Trans ; 46(4): 829-842, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29986938

RESUMO

Neurodegenerative proteinopathies are a group of pathologically similar, progressive disorders of the nervous system, characterised by structural alterations within and toxic misfolding of susceptible proteins. Oligomerisation of Aß, tau, α-synuclein and TDP-43 leads to a toxin gain- or loss-of-function contributing to the phenotype observed in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia. Misfolded proteins can adversely affect mitochondria, and post-mitotic neurones are especially sensitive to metabolic dysfunction. Misfolded proteins impair mitochondrial dynamics (morphology and trafficking), preventing functional mitochondria reaching the synapse, the primary site of ATP utilisation. Furthermore, a direct association of misfolded proteins with mitochondria may precipitate or augment dysfunctional oxidative phosphorylation and mitochondrial quality control, causing redox dyshomeostasis observed in disease. As such, a significant interest lies in understanding mechanisms of mitochondrial toxicity in neurodegenerative disorders and in dissecting these mechanisms with a view of maintaining mitochondrial homeostasis in disease. Recent advances in understanding mitochondrially controlled cell death pathways and elucidating the mitochondrial permeability pore bioarchitecture are beginning to present new avenues to target neurodegeneration. Novel mitochondrial roles of deubiquitinating enzymes are coming to light and present an opportunity for a new class of proteins to target therapeutically with the aim of promoting mitophagy and the ubiquitin-proteasome system. The brain is enormously metabolically active, placing a large emphasis on maintaining ATP supply. Therefore, identifying mechanisms to sustain mitochondrial function may represent a common intervention point across all proteinopathies.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Mitocôndrias/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Homeostase , Humanos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Mitofagia , Doenças Neurodegenerativas/fisiopatologia , Fosforilação Oxidativa , Complexo de Endopeptidases do Proteassoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina/metabolismo
9.
Sci Rep ; 7(1): 10492, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874733

RESUMO

Mitochondrial Ca2+ uptake has a key role in cellular Ca2+ homeostasis. Excessive matrix Ca2+ concentrations, especially when coincident with oxidative stress, precipitate opening of an inner mitochondrial membrane, high-conductance channel: the mitochondrial permeability transition pore (mPTP). mPTP opening has been implicated as a final cell death pathway in numerous diseases and therefore understanding conditions dictating mPTP opening is crucial for developing targeted therapies. Here, we have investigated the impact of mitochondrial metabolic state on the probability and consequences of mPTP opening. Isolated mitochondria were energised using NADH- or FADH2-linked substrates. The functional consequences of Ca2+-induced mPTP opening were assessed by Ca2+ retention capacity, using fluorescence-based analysis, and simultaneous measurements of mitochondrial Ca2+ handling, membrane potential, respiratory rate and production of reactive oxygen species (ROS). Succinate-induced, membrane potential-dependent reverse electron transfer sensitised mitochondria to mPTP opening. mPTP-induced depolarisation under succinate subsequently inhibited reverse electron transfer. Complex I-driven respiration was reduced after mPTP opening but sustained in the presence of complex II-linked substrates, consistent with inhibition of complex I-supported respiration by leakage of matrix NADH. Additionally, ROS generated at complex III did not sensitise mitochondria to mPTP opening. Thus, cellular metabolic fluxes and metabolic environment dictate mitochondrial functional response to Ca2+ overload.


Assuntos
Ativação do Canal Iônico , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Animais , Cálcio/metabolismo , Respiração Celular , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético , Feminino , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , NAD/metabolismo , Consumo de Oxigênio , Ratos , Espécies Reativas de Oxigênio/metabolismo , Ácido Succínico/metabolismo
10.
Sci Rep ; 6: 37798, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886240

RESUMO

Growing evidence suggests persistent mitochondrial permeability transition pore (mPTP) opening is a key pathophysiological event in cell death underlying a variety of diseases. While it has long been clear the mPTP is a druggable target, current agents are limited by off-target effects and low therapeutic efficacy. Therefore identification and development of novel inhibitors is necessary. To rapidly screen large compound libraries for novel mPTP modulators, a method was exploited to cryopreserve large batches of functionally active mitochondria from cells and tissues. The cryopreserved mitochondria maintained respiratory coupling and ATP synthesis, Ca2+ uptake and transmembrane potential. A high-throughput screen (HTS), using an assay of Ca2+-induced mitochondrial swelling in the cryopreserved mitochondria identified ER-000444793, a potent inhibitor of mPTP opening. Further evaluation using assays of Ca2+-induced membrane depolarisation and Ca2+ retention capacity also indicated that ER-000444793 acted as an inhibitor of the mPTP. ER-000444793 neither affected cyclophilin D (CypD) enzymatic activity, nor displaced of CsA from CypD protein, suggesting a mechanism independent of CypD inhibition. Here we identified a novel, CypD-independent inhibitor of the mPTP. The screening approach and compound described provides a workflow and additional tool to aid the search for novel mPTP modulators and to help understand its molecular nature.


Assuntos
Criopreservação , Ciclofilinas/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Mitocôndrias/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Quinolinas/farmacologia , Trifosfato de Adenosina/biossíntese , Animais , Peptidil-Prolil Isomerase F , Metabolismo Energético , Feminino , Células HeLa , Humanos , Mitocôndrias/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Ratos , Ratos Sprague-Dawley
11.
Cardiovasc Res ; 104(1): 24-36, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25063991

RESUMO

AIMS: Hypoxia-inducible factor-1 (HIF-1) has been reported to promote tolerance against acute myocardial ischaemia-reperfusion injury (IRI). However, the mechanism through which HIF-1 stabilization actually confers this cardioprotection is not clear. We investigated whether HIF-1α stabilization protects the heart against acute IRI by preventing the opening of the mitochondrial permeability transition pore (MPTP) and the potential mechanisms involved. METHODS AND RESULTS: Stabilization of myocardial HIF-1 was achieved by pharmacological inhibition of prolyl hydroxylase (PHD) domain-containing enzyme using GSK360A or using cardiac-specific ablation of von Hippel-Lindau protein (VHL(fl/fl)) in mice. Treatment of HL-1 cardiac cells with GSK360A stabilized HIF-1, increased the expression of HIF-1 target genes pyruvate dehydrogenase kinase-1 (PDK1) and hexokinase II (HKII), and reprogrammed cell metabolism to aerobic glycolysis, thereby resulting in the production of less mitochondrial oxidative stress during IRI, and less MPTP opening, effects which were shown to be dependent on HKII. These findings were further confirmed when HIF-1 stabilization in the rat and murine heart resulted in smaller myocardial infarct sizes (both in vivo and ex vivo), decreased mitochondrial oxidative stress, and inhibited MPTP opening following IRI, effects which were also found to be dependent on HKII. CONCLUSIONS: We have demonstrated that acute HIF-1α stabilization using either a pharmacological or genetic approach protected the heart against acute IRI by promoting aerobic glycolysis, decreasing mitochondrial oxidative stress, activating HKII, and inhibiting MPTP opening.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glicólise , Hexoquinase/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos Knockout , Mitocôndrias Cardíacas/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Estresse Oxidativo , Inibidores de Prolil-Hidrolase/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Piruvato Desidrogenase Quinase de Transferência de Acetil , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo , Proteína Supressora de Tumor Von Hippel-Lindau/genética
12.
J Clin Invest ; 122(2): 600-11, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22214851

RESUMO

Increased expression of the regulatory subunit of HIFs (HIF-1α or HIF-2α) is associated with metabolic adaptation, angiogenesis, and tumor progression. Understanding how HIFs are regulated is of intense interest. Intriguingly, the molecular mechanisms that link mitochondrial function with the HIF-regulated response to hypoxia remain to be unraveled. Here we describe what we believe to be novel functions of the human gene CHCHD4 in this context. We found that CHCHD4 encodes 2 alternatively spliced, differentially expressed isoforms (CHCHD4.1 and CHCHD4.2). CHCHD4.1 is identical to MIA40, the homolog of yeast Mia40, a key component of the mitochondrial disulfide relay system that regulates electron transfer to cytochrome c. Further analysis revealed that CHCHD4 proteins contain an evolutionarily conserved coiled-coil-helix-coiled-coil-helix (CHCH) domain important for mitochondrial localization. Modulation of CHCHD4 protein expression in tumor cells regulated cellular oxygen consumption rate and metabolism. Targeting CHCHD4 expression blocked HIF-1α induction and function in hypoxia and resulted in inhibition of tumor growth and angiogenesis in vivo. Overexpression of CHCHD4 proteins in tumor cells enhanced HIF-1α protein stabilization in hypoxic conditions, an effect insensitive to antioxidant treatment. In human cancers, increased CHCHD4 expression was found to correlate with the hypoxia gene expression signature, increasing tumor grade, and reduced patient survival. Thus, our study identifies a mitochondrial mechanism that is critical for regulating the hypoxic response in tumors.


Assuntos
Hipóxia/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Neoplasias/patologia , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Isoformas de Proteínas/metabolismo , Transdução de Sinais/fisiologia , Processamento Alternativo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Análise em Microsséries , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Neoplasias/metabolismo , Isoformas de Proteínas/genética , Alinhamento de Sequência , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA