Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1032429, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937008

RESUMO

A better understanding of the nutritional requirements of sheep, especially in terms of minerals, is crucial for improving production. We estimated the net requirements for Ca, P, K, Mg, and Na for gain (NCag, NPg, NKg, NMgg, and NNag) and maintenance (NCam, NPm, NKm, NMgm, and NNam) in male and female hair sheep. Six datasets with 248 individual records of hair sheep (139 non-castrated males, 75 castrated males and 34 females) were used to estimate the net macromineral requirements for gain. To estimate the net macromineral requirements for maintenance, 52 observations (26 non-castrated and 26 castrated males) were used. A meta-analytical approach was applied, using non-linear mixed effects models and the study as a random effect. Based on information criteria for model selection, heterogeneous variance functions were more likely to describe mineral requirements with a low level of model selection uncertainty. The adopted criteria allowed the choice of the best models to represent the macromineral requirements. The chosen models explained the observed variability in the sex, and the choices were based on a low level of uncertainty (w ≥ 0.90). Irrespective of sex, NCag and NPg decreased with increasing BW from 10 to 30 kg and average daily gain (ADG) of 150 g/day, ranging from 1.71-1.38; 1.83-1.57; 1.82-1.51 of Ca and 0.86-0.66; 0.92-0.78; 0.92-0.75 of P for non-castrated males, castrated males, and females, respectively. The NKg remained constant, with mean values of 0.26 g/day. The NNag range was 0.17 to 0.14 g/day for non-castrated males, 0.20 to 0.25 g/day for females, and constant (0.18 g/day) for castrated males with an increase in BW from 10 to 30 kg and an ADG of 150 g/day. Macromineral requirements for maintenance (mg/kg BW) and retention (%) were 23.70 and 54.30 for Ca, 25.33 and 79.80 for P, 11.74 and 5.00 for K, 2.63 and 8.50 for Mg, and 7.01 and 8.10 for Na for males. The International Committees did not provide inferences about the sex influence on mineral requirements. Our study indicates that sex is one factor that influences the macromineral requirements for gain. The information generated in this study can be used to optimize the mineral management of hair sheep in the growing phase in tropical regions.

2.
Front Vet Sci ; 8: 676956, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34179169

RESUMO

The aim of this study was to estimate the energy and protein requirements for maintenance and growth of lambs. A total of 35 crossbreed Dorper × Santa Ines lambs [31 ± 1.28 kg of initial body weight (BW) and 4 months old] were distributed in a completely randomized design with three treatments groups (ad libitum, 30 and 60% of feed restriction). Five lambs were slaughtered at the beginning of the experimental trial as a reference group to estimate the initial empty BW (EBW) and body composition. When the animals of the ad libitum treatment reached a BW average of 47.2 kg, at day 84 of trial, all lambs were slaughtered. The feed restriction promoted reduction in body fat (P < 0.001) and energy concentration (P < 0.001), while protein showed a quadratic response (P = 0.05). The equations obtained for NEg and NPg requirements were 0.2984 × EBW0.75 × EBWG0.8069 and 248.617 × EBW-0.15546, respectively. The net energy (NEm) and protein (NPm) for maintenance were 71.00 kcal/kg EBW0.75/day and 1.76 g/kg EBW0.75/day, respectively. In conclusion, the NEg and NPg requirement for lambs with 30 kg of BW and 200 g of average daily gain (ADG) were 0.736 Mcal/day and 24.38 g/day, respectively. Our findings indicate that the NEm for crossbreed Dorper × Santa Ines lambs is similar to those recommended by the international committees; however, we support the hypothesis that the requirements for gain are lower.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA