Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Essays Biochem ; 64(2): 299-311, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32406506

RESUMO

The fidelity of chromosome segregation during mitosis is intimately linked to the function of kinetochores, which are large protein complexes assembled at sites of centromeric heterochromatin on mitotic chromosomes. These key "orchestrators" of mitosis physically connect chromosomes to spindle microtubules and transduce forces through these connections to congress chromosomes and silence the spindle assembly checkpoint. Kinetochore-microtubule attachments are highly regulated to ensure that incorrect attachments are not prematurely stabilized, but instead released and corrected. The kinase activity of the centromeric protein Aurora B is required for kinetochore-microtubule destabilization during mitosis, but how the kinase acts on outer kinetochore substrates to selectively destabilize immature and erroneous attachments remains debated. Here, we review recent literature that sheds light on how Aurora B kinase is recruited to both centromeres and kinetochores and discuss possible mechanisms for how kinase interactions with substrates at distinct regions of mitotic chromosomes are regulated.


Assuntos
Aurora Quinase B/metabolismo , Centrômero/enzimologia , Segregação de Cromossomos , Cinetocoros/enzimologia , Microtúbulos/enzimologia , Mitose , Fuso Acromático/enzimologia , Animais , Humanos
2.
J Cell Biol ; 219(3)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32028528

RESUMO

Aurora B kinase has a critical role in regulating attachments between kinetochores and spindle microtubules during mitosis. Early in mitosis, kinase activity at kinetochores is high to promote attachment turnover, and in later mitosis, activity decreases to ensure attachment stabilization. Aurora B localizes prominently to inner centromeres, and a population of the kinase is also detected at kinetochores. How Aurora B is recruited to and evicted from these regions to regulate kinetochore-microtubule attachments remains unclear. Here, we identified and investigated discrete populations of Aurora B at the centromere/kinetochore region. An inner centromere pool is recruited by Haspin phosphorylation of histone H3, and a kinetochore-proximal outer centromere pool is recruited by Bub1 phosphorylation of histone H2A. Finally, a third pool resides ~20 nm outside of the inner kinetochore protein CENP-C in early mitosis and does not require either the Bub1/pH2A/Sgo1 or Haspin/pH3 pathway for localization or activity. Our results suggest that distinct molecular pathways are responsible for Aurora B recruitment to centromeres and kinetochores.


Assuntos
Aurora Quinase B/metabolismo , Centrômero/enzimologia , Cinetocoros/enzimologia , Mitose , Aurora Quinase B/genética , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrômero/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Transdução de Sinais , Fatores de Tempo
3.
J Cell Biol ; 217(1): 163-177, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29187526

RESUMO

Precise regulation of kinetochore-microtubule attachments is essential for successful chromosome segregation. Central to this regulation is Aurora B kinase, which phosphorylates kinetochore substrates to promote microtubule turnover. A critical target of Aurora B is the N-terminal "tail" domain of Hec1, which is a component of the NDC80 complex, a force-transducing link between kinetochores and microtubules. Although Aurora B is regarded as the "master regulator" of kinetochore-microtubule attachment, other mitotic kinases likely contribute to Hec1 phosphorylation. In this study, we demonstrate that Aurora A kinase regulates kinetochore-microtubule dynamics of metaphase chromosomes, and we identify Hec1 S69, a previously uncharacterized phosphorylation target site in the Hec1 tail, as a critical Aurora A substrate for this regulation. Additionally, we demonstrate that Aurora A kinase associates with inner centromere protein (INCENP) during mitosis and that INCENP is competent to drive accumulation of the kinase to the centromere region of mitotic chromosomes. These findings reveal that both Aurora A and B contribute to kinetochore-microtubule attachment dynamics, and they uncover an unexpected role for Aurora A in late mitosis.


Assuntos
Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Animais , Linhagem Celular Tumoral , Centrômero/metabolismo , Proteínas do Citoesqueleto , Células HeLa , Humanos , Metáfase/fisiologia , Fosforilação , Potoroidae , Ligação Proteica/fisiologia , Fuso Acromático/metabolismo
4.
Biochemistry ; 55(41): 5781-5789, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27653243

RESUMO

5-Hydroxymethylcytosine (5hmC) is an epigenetic marker that has recently been shown to promote homologous recombination (HR). In this study, we determine the effects of 5hmC on the structure, thermodynamics, and conformational dynamics of the Holliday junction (the four-stranded DNA intermediate associated with HR) in its native stacked-X form. The hydroxymethyl and the control methyl substituents are placed in the context of an amphimorphic GxCC trinucleotide core sequence (where xC is C, 5hmC, or the methylated 5mC), which is part of a sequence also recognized by endonuclease G to promote HR. The hydroxymethyl group of the 5hmC junction adopts two distinct rotational conformations, with an in-base-plane form being dominant over the competing out-of-plane rotamer that has typically been seen in duplex structures. The in-plane rotamer is seen to be stabilized by a more stable intramolecular hydrogen bond to the junction backbone. Stabilizing hydrogen bonds (H-bonds) formed by the hydroxyl substituent in 5hmC or from a bridging water in the 5mC structure provide approximately 1.5-2 kcal/mol per interaction of stability to the junction, which is mostly offset by entropy compensation, thereby leaving the overall stability of the G5hmCC and G5mCC constructs similar to that of the GCC core. Thus, both methyl and hydroxymethyl modifications are accommodated without disrupting the structure or stability of the Holliday junction. Both 5hmC and 5mC are shown to open the structure to make the junction core more accessible. The overall consequences of incorporating 5hmC into a DNA junction are thus discussed in the context of the specificity in protein recognition of the hydroxymethyl substituent through direct and indirect readout mechanisms.


Assuntos
5-Metilcitosina/análogos & derivados , DNA Cruciforme , Conformação de Ácido Nucleico , 5-Metilcitosina/química , Varredura Diferencial de Calorimetria , Cristalografia por Raios X , Teoria Quântica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA