Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(20): 18564-18570, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31050879

RESUMO

One of the simplest molecular-scale electronic devices is the molecular rectifier. In spite of considerable efforts aimed at understanding structure-property relationships in these systems, devices with predictable and stable electronic properties are yet to be developed. Here, we demonstrate highly efficient current rectification in a new class of compounds that form self-assembled monolayers on silicon. We achieve this by exploiting the coupling of the molecules with the top electrode which, in turn, controls the position of the relevant molecular orbitals. The molecules consist of a silane anchoring group and a nitrogen-substituted benzene ring, separated by a propyl group and imine linkage, and result from a simple, robust, and high-yield synthetic procedure. We find that when incorporated in molecular diodes, these compounds can rectify current by as much as 3 orders of magnitude, depending on their structure, with a maximum rectification ratio of 2635 being obtained in ( E)-1-(4-cyanophenyl)- N-(3-(triethoxysilyl) propyl)methanimine (average Ravg = 1683 ± 458, at an applied voltage of 2 V). This performance is on par with that of the best molecular rectifiers obtained on metallic electrodes, but it has the advantage of lower cost and more efficient integration with current silicon technologies. The development of molecular rectifiers on silicon may yield hybrid systems that can expand the use of silicon toward novel functionalities governed by the molecular species grafted onto its surface.

2.
Sci Rep ; 6: 38092, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27897250

RESUMO

We report on the synthesis and electrical properties of nine new alkylated silane self-assembled monolayers (SAMs) - (EtO)3Si(CH2)nN = CHPhX where n = 3 or 11 and X = 4-CF3, 3,5-CF3, 3-F-4-CF3, 4-F, or 2,3,4,5,6-F, and explore their rectification behavior in relation to their molecular structure. The electrical properties of the films were examined in a metal/insulator/metal configuration, with a highly-doped silicon bottom contact and a eutectic gallium-indium liquid metal (EGaIn) top contact. The junctions exhibit high yields (>90%), a remarkable resistance to bias stress, and current rectification ratios (R) between 20 and 200 depending on the structure, degree of order, and internal dipole of each molecule. We found that the rectification ratio correlates positively with the strength of the molecular dipole moment and it is reduced with increasing molecular length.

3.
ACS Appl Mater Interfaces ; 5(19): 9322-9, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24006838

RESUMO

Nitric oxide (NO), a reactive free radical, has proven effective in eradicating bacterial biofilms with reduced risk of fostering antibacterial resistance. Herein, we evaluated the efficacy of NO-releasing silica nanoparticles against Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus biofilms as a function of particle size and shape. Three sizes of NO-releasing silica nanoparticles (i.e., 14, 50, and 150 nm) with identical total NO release (∼0.3 µmol/mg) were utilized to study antibiofilm eradication as a function of size. To observe the role of particle shape on biofilm killing, we varied the aspect ratio of the NO-releasing silica particles from 1 to 8 while maintaining constant particle volume (∼0.02 µm(3)) and NO-release totals (∼0.7 µmol/mg). Nitric oxide-releasing particles with decreased size and increased aspect ratio were more effective against both P. aeruginosa and S. aureus biofilms, with the Gram-negative species exhibiting the greatest susceptibility to NO. To further understand the influence of these nanoparticle properties on NO-mediated antibacterial activity, we visualized intracellular NO concentrations and cell death with confocal microscopy. Smaller NO-releasing particles (14 nm) exhibited better NO delivery and enhanced bacteria killing compared to the larger (50 and 150 nm) particles. Likewise, the rod-like NO-releasing particles proved more effective than spherical particles in delivering NO and inducing greater antibacterial action throughout the biofilm.


Assuntos
Antibacterianos/química , Biofilmes/efeitos dos fármacos , Nanopartículas/química , Óxido Nítrico/química , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Óxido Nítrico/farmacologia , Tamanho da Partícula , Pseudomonas aeruginosa/efeitos dos fármacos , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Staphylococcus aureus/efeitos dos fármacos
4.
J Bacteriol ; 195(4): 886-95, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23243304

RESUMO

Kingella kingae is an emerging bacterial pathogen that is being recognized increasingly as an important etiology of septic arthritis, osteomyelitis, and bacteremia, especially in young children. The pathogenesis of K. kingae disease begins with bacterial adherence to respiratory epithelium, which is dependent on type IV pili and is influenced by two PilC-like proteins called PilC1 and PilC2. Production of either PilC1 or PilC2 is necessary for K. kingae piliation and bacterial adherence. In this study, we set out to further investigate the role of PilC1 and PilC2 in type IV pilus-associated phenotypes. We found that PilC1 contains a functional 9-amino-acid calcium-binding (Ca-binding) site with homology to the Pseudomonas aeruginosa PilY1 Ca-binding site and that PilC2 contains a functional 12-amino-acid Ca-binding site with homology to the human calmodulin Ca-binding site. Using targeted mutagenesis to disrupt the Ca-binding sites, we demonstrated that the PilC1 and PilC2 Ca-binding sites are dispensable for piliation. Interestingly, we showed that the PilC1 site is necessary for twitching motility and adherence to Chang epithelial cells, while the PilC2 site has only a minor influence on twitching motility and no influence on adherence. These findings establish key differences in PilC1 and PilC2 function in K. kingae and provide insights into the biology of the PilC-like family of proteins.


Assuntos
Aderência Bacteriana/fisiologia , Cálcio/metabolismo , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/fisiologia , Kingella kingae/metabolismo , Sítios de Ligação , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/classificação , Regulação Bacteriana da Expressão Gênica/fisiologia , Kingella kingae/genética , Movimento , Fenótipo , Plasmídeos , Ligação Proteica
5.
Nitric Oxide ; 26(3): 169-73, 2012 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-22349019

RESUMO

While much research has been directed to harnessing the antimicrobial properties of exogenous NO, the possibility of bacteria developing resistance to such therapy has not been thoroughly studied. Herein, we evaluate potential NO resistance using spontaneous and serial passage mutagenesis assays. Specifically, Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa were systematically exposed to NO-releasing 75mol% MPTMS-TEOS nitrosothiol particles at or below minimum inhibitory concentration (MIC) levels. In the spontaneous mutagenesis assay, bacteria that survived exposure to lethal concentrations of NO showed no increase in MIC. Similarly, no increase in MIC was observed in the serial passage mutagenesis assay after exposure of these species to sub-inhibitory concentrations of NO through 20 d.


Assuntos
Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Óxido Nítrico/farmacologia , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Mutagênese
6.
ACS Appl Mater Interfaces ; 4(2): 796-804, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22256898

RESUMO

The synthesis of a tertiary thiol-bearing silane precursor (i.e., N-acetyl penicillamine propyltrimethoxysilane or NAPTMS) to enable enhanced NO storage stability at physiological temperature is described. The novel silane was co-condensed with alkoxy- or alkylalkoxysilanes under varied synthetic parameters (e.g., water to silane ratio, catalyst and solvent concentrations, and reaction time) to evaluate systematically the formation of stable xerogel films. The resulting xerogels were subsequently nitrosated to yield tertiary RSNO-modified coatings. Total NO storage ranged from 0.87 to 1.78 µmol cm(-2) depending on the NAPTMS concentration and xerogel coating thickness. Steric hindrance near the nitroso functionality necessitated the use of photolysis to liberate NO. The average NO flux for irradiated xerogels (20% NAPTMS balance TEOS xerogel film cast using 30 µL) in physiological buffer at 37 °C was ∼23 pmol cm(-2) s(-1). The biomedical utility of the photoinitiated NO-releasing films was illustrated by their ability to both reduce Pseudomonas aeruginosa adhesion by ∼90% relative to control interfaces and eradicate the adhered bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA