Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Front Neurosci ; 18: 1362497, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694899

RESUMO

Creatine transporter deficiency (CTD) is an X-linked disease caused by mutations in the Slc6a8 gene. The impaired creatine uptake in the brain leads to developmental delays with intellectual disability. We hypothesized that deficient creatine uptake in CTD cerebral cells impact methylation balance leading to alterations of genes and proteins expression by epigenetic mechanism. In this study, we determined the status of nucleic acid methylation in both Slc6a8 knockout mouse model and brain organoids derived from CTD patients' cells. We also investigated the effect of dodecyl creatine ester (DCE), a promising prodrug that increases brain creatine content in the mouse model of CTD. The level of nucleic acid methylation was significantly reduced compared to healthy controls in both in vivo and in vitro CTD models. This hypo-methylation tended to be regulated by DCE treatment in vivo. These results suggest that increased brain creatine after DCE treatment restores normal levels of DNA methylation, unveiling the potential of using DNA methylation as a marker to monitor the drug efficacy.

2.
Elife ; 122023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37830910

RESUMO

Creatine transporter deficiency (CTD) is an X-linked disease caused by mutations in the SLC6A8 gene. The impaired creatine uptake in the brain results in intellectual disability, behavioral disorders, language delay, and seizures. In this work, we generated human brain organoids from induced pluripotent stem cells of healthy subjects and CTD patients. Brain organoids from CTD donors had reduced creatine uptake compared with those from healthy donors. The expression of neural progenitor cell markers SOX2 and PAX6 was reduced in CTD-derived organoids, while GSK3ß, a key regulator of neurogenesis, was up-regulated. Shotgun proteomics combined with integrative bioinformatic and statistical analysis identified changes in the abundance of proteins associated with intellectual disability, epilepsy, and autism. Re-establishment of the expression of a functional SLC6A8 in CTD-derived organoids restored creatine uptake and normalized the expression of SOX2, GSK3ß, and other key proteins associated with clinical features of CTD patients. Our brain organoid model opens new avenues for further characterizing the CTD pathophysiology and supports the concept that reinstating creatine levels in patients with CTD could result in therapeutic efficacy.


Assuntos
Deficiência Intelectual , Deficiência Intelectual Ligada ao Cromossomo X , Humanos , Deficiência Intelectual/genética , Creatina/genética , Creatina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Encéfalo/metabolismo , Organoides/metabolismo
3.
Front Mol Neurosci ; 16: 1118707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063368

RESUMO

Creatine transporter deficiency (CTD), a leading cause of intellectual disability is a result of the mutation in the gene encoding the creatine transporter SLC6A8, which prevents creatine uptake into the brain, causing mental retardation, expressive speech and language delay, autistic-like behavior and epilepsy. Preclinical in vitro and in vivo data indicate that dodecyl creatine ester (DCE) which increases the creatine brain content, might be a therapeutic option for CTD patients. To gain a better understanding of the pathophysiology and DCE treatment efficacy in CTD, this study focuses on the identification of biomarkers related to cognitive improvement in a Slc6a8 knockout mouse model (Slc6a8-/y) engineered to mimic the clinical features of CTD patients which have low brain creatine content. Shotgun proteomics analysis of 4,035 proteins in four different brain regions; the cerebellum, cortex, hippocampus (associated with cognitive functions) and brain stem, and muscle as a control, was performed in 24 mice. Comparison of the protein abundance in the four brain regions between DCE-treated intranasally Slc6a8-/y mice and wild type and DCE-treated Slc6a8-/y and vehicle group identified 14 biomarkers, shedding light on the mechanism of action of DCE. Integrative bioinformatics and statistical modeling identified key proteins in CTD, including KIF1A and PLCB1. The abundance of these proteins in the four brain regions was significantly correlated with both the object recognition and the Y-maze tests. Our findings suggest a major role for PLCB1, KIF1A, and associated molecules in the pathogenesis of CTD.

4.
Blood Adv ; 5(23): 5372-5386, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34555842

RESUMO

Non-Hodgkin B-cell lymphomas (B-NHL) mainly develop within lymph nodes as aggregates of tumor cells densely packed with their surrounding microenvironment, creating a tumor niche specific to each lymphoma subtypes. In vitro preclinical models mimicking biomechanical forces, cellular microenvironment, and 3D organization of B-cell lymphomas remain scarce, while all these parameters are key determinants of lymphomagenesis and drug resistance. Using a microfluidic method based on cell encapsulation inside permeable, elastic, and hollow alginate microspheres, we developed a new tunable 3D model incorporating lymphoma B cells, extracellular matrix (ECM), and/or tonsil stromal cells (TSC). Under 3D confinement, lymphoma B cells were able to form cohesive spheroids resulting from overexpression of ECM components. Moreover, lymphoma B cells and TSC dynamically formed self-organized 3D spheroids favoring tumor cell growth. 3D culture induced resistance to the classical chemotherapeutic agent doxorubicin, but not to the BCL2 inhibitor ABT-199, identifying this approach as a relevant in vitro model to assess the activity of therapeutic agents in B-NHL. RNA-sequence analysis highlighted the synergy of 3D, ECM, and TSC in upregulating similar pathways in malignant B cells in vitro than those overexpressed in primary lymphoma B cells in situ. Finally, our 3D model including ECM and TSC allowed long-term in vitro survival of primary follicular lymphoma B cells. In conclusion, we propose a new high-throughput 3D model mimicking lymphoma tumor niche and making it possible to study the dynamic relationship between lymphoma B cells and their microenvironment and to screen new anti-cancer drugs.


Assuntos
Antineoplásicos , Linfoma de Células B , Linfoma não Hodgkin , Linfócitos B , Proliferação de Células , Humanos , Linfoma de Células B/tratamento farmacológico , Microambiente Tumoral
5.
Br J Cancer ; 123(5): 772-784, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32565541

RESUMO

BACKGROUND: Cytochrome P450 1B1 (CYP1B1) is mostly expressed in tumours and displays unusual properties. Its two polymorphic forms were differently associated with anticancer drug sensitivity. We decipher here the role of this polymorphism in anticancer drug efficacy in vitro, in vivo and in the clinical setting. METHODS: From head-and-neck squamous cell carcinoma cell lines not expressing CYP1B1, we generated isogenic derivatives expressing the two forms. Proliferation, invasiveness, stem cell characteristics, sensitivity to anticancer agents and transcriptome were analysed. Tumour growth and chemosensitivity were studied in vivo. A prospective clinical trial on 121 patients with advanced head-and-neck cancers was conducted, and a validation-retrospective study was conducted. RESULTS: Cell lines expressing the variant form displayed high rates of in vitro proliferation and invasiveness, stemness features and resistance to DNA-damaging agents. In vivo, tumours expressing the variant CYP1B1 had higher growth rates and were markedly drug-resistant. In the clinical study, overall survival was significantly associated with the genotypes, wild-type patients presenting a longer median survival (13.5 months) than the variant patients (6.3 months) (p = 0.0166). CONCLUSIONS: This frequent CYP1B1 polymorphism is crucial for cancer cell proliferation, migration, resistance to chemotherapy and stemness properties, and strongly influences head-and-neck cancer patients' survival.


Assuntos
Citocromo P-450 CYP1B1/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Células-Tronco Neoplásicas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Cetuximab/administração & dosagem , Metilação de DNA , Feminino , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/enzimologia , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Células-Tronco Neoplásicas/enzimologia , Regiões Promotoras Genéticas , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA