RESUMO
Introduction The objective of this quality improvement study was to assess radiology report follow-up recommendation trends upon detection of incidental renal lesions before and after instituting standardized follow-up macros. Materials and methods A retrospective review was performed in 2019 of multiphase imaging workups on renal lesions (n = 396), including the following imaging modalities: ultrasound, CT with and without contrast, and spine MRI. Utilizing the same collection methods, a similar retrospective set of cases was collected in 2021, 12 months following the creation of the renal follow-up macros (n = 501). After exclusions, the second set was left with 98 cases of newly characterized incidental renal lesions. For both sets, we assessed the reports of the exams that initially detected the incidental renal lesion. We evaluated the incident reports for the presence of a follow-up recommendation, recommendation completeness, and alignment with the American College of Radiology (ACR) white paper suggestions for renal lesion follow-up. Results Before the implementation of the standardized renal follow-up macros, initial follow-up recommendations were in concordance with the ACR white paper recommendations in 33 of 98 cases (33.7%), incomplete or discordant in 49 of 98 (50.0%), and absent in 16 of 98 cases (16.3%). Following the institution of our macros, there was an improvement in concordant follow-up recommendations (51/98; 52.0%) (p = 0.009), a decrease in the number of incomplete or discordant recommendations (37/98; 37.8%), and a decrease in the number of reports lacking a follow-up recommendation (10/98; 10.2%). Conclusion Utilization of standard language renal lesion follow-up macros improves the rate of appropriate follow-up recommendations in radiology reports when encountering a previously unknown incidental renal lesion.
RESUMO
Determinants of protective immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection require the development of well-standardized, reproducible antibody assays. This need has led to the emergence of a variety of neutralization assays. Head-to-head evaluation of different SARS-CoV-2 neutralization platforms could facilitate comparisons across studies and laboratories. Five neutralization assays were compared using 40 plasma samples from convalescent individuals with mild to moderate coronavirus disease 2019 (COVID-19): four cell-based systems using either live recombinant SARS-CoV-2 or pseudotyped viral particles created with lentivirus (LV) or vesicular stomatitis virus (VSV) packaging and one surrogate enzyme-linked immunosorbent assay (ELISA)-based test that measures inhibition of the spike protein receptor binding domain (RBD) binding its receptor human angiotensin converting enzyme 2 (hACE2). Vero cells, Vero E6 cells, HEK293T cells expressing hACE2, and TZM-bl cells expressing hACE2 and transmembrane serine protease 2 were tested. All cell-based assays showed 50% neutralizing dilution (ND50) geometric mean titers (GMTs) that were highly correlated (Pearson r = 0.81 to 0.89) and ranged within 3.4-fold. The live virus assay and LV pseudovirus assays with HEK293T/hACE2 cells showed very similar mean titers, 141 and 178, respectively. ND50 titers positively correlated with plasma IgG targeting SARS-CoV-2 spike protein and RBD (r = 0.63 to 0.89), but moderately correlated with nucleoprotein IgG (r = 0.46 to 0.73). ND80 GMTs mirrored ND50 data and showed similar correlation between assays and with IgG concentrations. The VSV pseudovirus assay and LV pseudovirus assay with HEK293T/hACE2 cells in low- and high-throughput versions were calibrated against the WHO SARS-CoV-2 IgG standard. High concordance between the outcomes of cell-based assays with live and pseudotyped virions enables valid cross-study comparison using these platforms.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Chlorocebus aethiops , Células HEK293 , Humanos , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/genética , Células VeroRESUMO
Conventional immunoprecipitation/mass spectroscopy identification of HLA-restricted peptides remains the purview of specializing laboratories, due to the complexity of the methodology, and requires computational post-analysis to assign peptides to individual alleles when using pan-HLA antibodies. We have addressed these limitations with ARTEMIS: a simple, robust, and flexible platform for peptide discovery across ligandomes, optionally including specific proteins-of-interest, that combines novel, secreted HLA-I discovery reagents spanning multiple alleles, optimized lentiviral transduction, and streamlined affinity-tag purification to improve upon conventional methods. This platform fills a middle ground between existing techniques: sensitive and adaptable, but easy and affordable enough to be widely employed by general laboratories. We used ARTEMIS to catalog allele-specific ligandomes from HEK293 cells for seven classical HLA alleles and compared results across replicates, against computational predictions, and against high-quality conventional datasets. We also applied ARTEMIS to identify potentially useful, novel HLA-restricted peptide targets from oncovirus oncoproteins and tumor-associated antigens.
Assuntos
Mapeamento de Epitopos/métodos , Espectrometria de Massas/métodos , Peptídeos/química , Peptídeos/imunologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Reprodutibilidade dos Testes , Relação Estrutura-Atividade , Fluxo de TrabalhoRESUMO
Determinants of protective immunity against SARS-CoV-2 infection require the development of well-standardized, reproducible antibody assays to be utilized in concert with clinical trials to establish correlates of risk and protection. This need has led to the appearance of a variety of neutralization assays used by different laboratories and companies. Using plasma samples from COVID-19 convalescent individuals with mild-to-moderate disease from a localized outbreak in a single region of the western US, we compared three platforms for SARS-CoV-2 neutralization: assay with live SARS-CoV-2, pseudovirus assay utilizing lentiviral (LV) and vesicular stomatitis virus (VSV) packaging, and a surrogate ELISA test. Vero, Vero E6, HEK293T cells expressing human angiotensin converting enzyme 2 (hACE2), and TZM-bl cells expressing hACE2 and transmembrane serine protease 2 (TMPRSS2) were evaluated. Live-virus and LV-pseudovirus assay with HEK293T cells showed similar geometric mean titers (GMTs) ranging 141-178, but VSV-pseudovirus assay yielded significantly higher GMT (310 95%CI 211-454; p < 0.001). Fifty percent neutralizing dilution (ND50) titers from live-virus and all pseudovirus assay readouts were highly correlated (Pearson r = 0.81-0.89). ND50 titers positively correlated with plasma concentration of IgG against SARS-CoV-2 spike and receptor binding domain (RBD) ( r = 0.63-0.89), but moderately correlated with nucleoprotein IgG ( r = 0.46-0.73). There was a moderate positive correlation between age and spike (Spearman's rho=0.37, p=0.02), RBD (rho=0.39, p=0.013) and nucleoprotein IgG (rho=0.45, p=0.003). ND80 showed stronger correlation with age than ND50 (ND80 rho=0.51 (p=0.001), ND50 rho=0.28 (p=0.075)). Our data demonstrate high concordance between cell-based assays with live and pseudotyped virions.