Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Evol Appl ; 17(9): e70009, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39301501

RESUMO

Knowledge about sex-specific difference in life-history traits-like growth, mortality, or behavior-is of key importance for management and conservation as these parameters are essential for predictive modeling of population sustainability. We applied a newly developed molecular sex identification method, in combination with a SNP (single nucleotide polymorphism) panel for inferring the population of origin, for more than 300 large Atlantic bluefin tuna (ABFT) collected over several years from newly reclaimed feeding grounds in the Northeast Atlantic. The vast majority (95%) of individuals were genetically assigned to the eastern Atlantic population, which migrates between spawning grounds in the Mediterranean and feeding grounds in the Northeast Atlantic. We found a consistent pattern of a male bias among the eastern Atlantic individuals, with a 4-year mean of 63% males (59%-65%). Males were most prominent within the smallest (< 230 cm) and largest (> 250 cm) length classes, while the sex ratio was close to 1:1 for intermediate sizes (230-250 cm). The results from this new, widely applicable, and noninvasive approach suggests differential occupancy or migration timing of ABFT males and females, which cannot be explained alone by sex-specific differences in growth. Our findings are corroborated by previous traditional studies of sex ratios in dead ABFT from the Atlantic, the Mediterranean, and the Gulf of Mexico. In concert with observed differences in growth and mortality rates between the sexes, these findings should be recognized in order to sustainably manage the resource, maintain productivity, and conserve diversity within the species.

2.
Ecol Evol ; 14(8): e70146, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39135727

RESUMO

Resource quality is an important concept in ecology and evolution that attempts to capture the fitness benefits a resource affords to an organism. Yet "quality" is a multivariate concept, potentially affected by many variables pertaining to the resource, its surroundings, and the resource chooser. Researchers often use a small number of proxy variables to simplify their estimation of resource quality, but without vetting their proxies against a wider set of potential quality estimators this approach risks overlooking potentially important characteristics that can explain patterns of resource use in their study systems. Here we used Neolamprologus multifasciatus, a group-living cichlid fish that utilizes empty snail shells as shelter resources, to examine how shells were used by, and partitioned among, group members in relation to a range of attributes, including shell size, intactness, texture, spatial position, and usage by heterospecifics. This approach generated a comprehensive picture of what characteristics contribute to the attractiveness and quality of each shell resource, confirming the importance of two previously proposed shell characteristics, size and intactness, but highlighting the influences of other unexplored variables, including shell spatial position and usage by heterospecifics. We also present a generally applicable "resource attractiveness index" as a means to estimate resource quality based on resource choice data. This index incorporates information from any number of resource characteristics and is of particular use when researchers wish to quantify resource value, but many characteristics jointly contribute to the value and attractiveness of the resource.

3.
Environ Sci Technol ; 58(31): 13904-13917, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39049184

RESUMO

Freshwater ecosystems are under threat from rising pharmaceutical pollution. While such pollutants are known to elicit biological effects on organisms, we have limited knowledge on how these effects might cascade through food-webs, disrupt ecological processes, and shape freshwater communities. In this study, we used a mesocosm experiment to explore how the community impacts of a top-order predator, the eastern mosquitofish (Gambusia holbrooki), are mediated by exposure to environmentally relevant low (measured concentration: ∼10 ng/L) and high concentrations (∼110 ng/L) of the pervasive pharmaceutical pollutant fluoxetine. We found no evidence that exposure to fluoxetine altered the consumptive effects of mosquitofish on zooplankton. However, once mosquitofish were removed from the mesocosms, zooplankton abundance recovered to a greater extent in control mesocosms compared to both low and high fluoxetine-exposed mesocosms. By the end of the experiment, this resulted in fundamental differences in community structure between the control and fluoxetine-treated mesocosms. Specifically, the control mesocosms were characterized by higher zooplankton abundances and lower algal biomass, whereas mesocosms exposed to either low or high concentrations of fluoxetine had lower zooplankton abundances and higher algal biomass. Our results suggest that fluoxetine, even at very low concentrations, can alter aquatic communities and hinder their recovery from disturbances.


Assuntos
Água Doce , Poluentes Químicos da Água , Zooplâncton , Animais , Água Doce/química , Zooplâncton/efeitos dos fármacos , Cadeia Alimentar , Ecossistema , Fluoxetina , Peixes , Ciprinodontiformes
4.
PLoS Biol ; 22(1): e3002478, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38289905

RESUMO

Biological rhythms have a crucial role in shaping the biology and ecology of organisms. Light pollution is known to disrupt these rhythms, and evidence is emerging that chemical pollutants can cause similar disruption. Conversely, biological rhythms can influence the effects and toxicity of chemicals. Thus, by drawing insights from the extensive study of biological rhythms in biomedical and light pollution research, we can greatly improve our understanding of chemical pollution. This Essay advocates for the integration of biological rhythmicity into chemical pollution research to gain a more comprehensive understanding of how chemical pollutants affect wildlife and ecosystems. Despite historical barriers, recent experimental and technological advancements now facilitate the integration of biological rhythms into ecotoxicology, offering unprecedented, high-resolution data across spatiotemporal scales. Recognizing the importance of biological rhythms will be essential for understanding, predicting, and mitigating the complex ecological repercussions of chemical pollution.


Assuntos
Ecossistema , Poluentes Ambientais , Tempo , Poluição Ambiental/efeitos adversos , Periodicidade
5.
Environ Toxicol Chem ; 43(3): 549-558, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37530415

RESUMO

Pharmaceuticals and personal care products (PPCPs) occur as variable mixtures in surface waters receiving discharges of human and animal wastes. A key question identified a decade ago is how to assess the effects of long-term exposures of these PPCP mixtures on nontarget organisms. We review the recent progress made on assessing the aquatic ecotoxicity of PPCP mixtures-with a focus on active pharmaceutical ingredients-and the challenges and research needs that remain. New knowledge has arisen from the use of whole-mixture testing combined with component-based approaches, and these studies show that mixtures often result in responses that meet the concentration addition model. However, such studies have mainly been done on individual species over shorter time periods, and longer-term, multispecies assessments remain limited. The recent use of targeted and nontargeted gene analyses has improved our understanding of the diverse pathways that are impacted, and there are promising new "read-across" methods that use mammalian data to predict toxicity in wildlife. Risk assessments remain challenging given the paucity of ecotoxicological and exposure data on PPCP mixtures. As such, the assessment of PPCP mixtures in aquatic environments should remain a priority given the potential for additive-as well as nontarget-effects in nontarget organisms. In addition, we need to improve our understanding of which species, life stages, and relevant endpoints are most sensitive to which types of PPCP mixtures and to expand our knowledge of environmental PPCP levels in regions of the globe that have been poorly studied to date. We recommend an increased use of new approach methodologies, in particular "omics," to advance our understanding of the molecular mechanics of mixture effects. Finally, we call for systematic research on the role of PPCP mixtures in the development of antimicrobial resistance. Environ Toxicol Chem 2024;43:549-558. © 2023 SETAC.


Assuntos
Cosméticos , Poluentes Químicos da Água , Animais , Humanos , Ecossistema , Ecotoxicologia , Medição de Risco , Preparações Farmacêuticas , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Cosméticos/análise , Mamíferos
6.
Sci Total Environ ; 912: 168570, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37979850

RESUMO

There is a growing concern about the presence of pharmaceuticals on the aquatic environment, while the marine environment has been much less investigated than in freshwater. Marine mammals are suitable sentinel species of the marine environment because they often feed at high trophic levels, have unique fat stores and long lifespan. Some small delphinids in particular serve as excellent sentinel species for contamination in the marine environment worldwide. To the best of our knowledge, no pharmaceuticals have been detected or reported in dolphins so far. In the present study, muscle, liver and blubber samples from three common dolphins (Delphinus delphis) and seven striped dolphins (Stenella coeruleoalba) stranded along the Basque Coast (northern Spain) were collected. A total of 95 pharmaceuticals based on detectability and predicted ability to bioaccumulate in fish were included in the liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. At least one pharmaceutical was found in 70 % of the individuals. Only three of the 95 monitored pharmaceuticals were detected in dolphin's tissues. Very low concentrations (<1 ng/g) of orphenadrine and pizotifen were found in liver and promethazine in blubber. Herein, the gap in the knowledge regarding the study organisms and marine environments with respect to pharmaceutical pollution, which demands further research to understand if pharmaceuticals are a threat for these apex predators, is highlighted and discussed.


Assuntos
Golfinhos Comuns , Golfinhos , Stenella , Animais , Baías , Cromatografia Líquida , Espectrometria de Massas em Tandem , Cetáceos , Preparações Farmacêuticas
7.
Mov Ecol ; 11(1): 68, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880741

RESUMO

Animal movement is a multifaceted process that occurs for multiple reasons with powerful consequences for food web and ecosystem dynamics. New paradigms and technical innovations have recently pervaded the field, providing increasingly powerful means to deliver fine-scale movement data, attracting renewed interest. Specifically in the aquatic environment, tracking with acoustic telemetry now provides integral spatiotemporal information to follow individual movements in the wild. Yet, this technology also holds great promise for experimental studies, enhancing our ability to truly establish cause-and-effect relationships. Here, we argue that ponds with well-defined borders (i.e. "islands in a sea of land") are particularly well suited for this purpose. To support our argument, we also discuss recent experiences from studies conducted in an innovative experimental infrastructure, composed of replicated ponds equipped with modern aquatic telemetry systems that allow for unparalleled insights into the movement patterns of individual animals.

8.
Curr Biol ; 33(15): R792-R797, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37552940

RESUMO

The term 'open science' refers to a range of methods, tools, platforms and practices that aim to make scientific research more accessible, transparent, reproducible and reliable. This includes, for example, sharing code, data and research materials, embracing new publishing formats such as registered reports and preprints, pursuing replication studies and reanalyses, optimising statistical approaches to improve evidence assessment and re-evaluating institutional incentives. The ongoing shift towards open science practices is partly due to mounting evidence that studies across disciplines suffer from biases, underpowered designs and irreproducible or non-replicable results. It also stems from a general desire amongst many researchers to reduce hyper-competitivity in science and instead promote collaborative research that benefits science and society.


Assuntos
Motivação , Editoração , Humanos , Pesquisadores
9.
Environ Toxicol Chem ; 42(6): 1326-1336, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36942382

RESUMO

Internal, slow-release implants can be an effective way to manipulate animal physiology or deliver a chemical exposure over long periods of time without the need for an exogenous exposure route. Slow-release implants involve dissolving a compound in a lipid-based carrier, which is inserted into the body of an organism. However, the release kinetics of the compound from the implant to body tissues also requires careful validation. We tested and validated a slow-release implant methodology for exposing fish to a pharmaceutical pollutant, fluoxetine. We tested two lipid-based carriers (coconut oil or vegetable shortening) in the common roach (Rutilus rutilus). The implants contained either a high (50 µg/g), low (25 µg/g), or control (0 µg/g) concentration of fluoxetine, and we measured tissue uptake in the brain, muscle, and plasma of implanted fish over 25 days. The two carriers released fluoxetine differently over time: coconut oil released fluoxetine in an accelerating manner (tissue uptake displayed a positive quadratic curvature), whereas vegetable shortening released fluoxetine in a decelerating manner (a negative quadratic curvature). For both carrier types, fluoxetine was measured at the highest concentration in the brain, followed by muscle and plasma. By comparing the implant exposures with waterborne exposures in the published literature, we showed that the implants delivered an internal exposure that would be similar if fish were exposed in surface waters containing effluents. Overall, we showed that slow-release internal implants are an effective method for delivering chronic exposures of fluoxetine over at least 1-month time scales. Internal exposures can be an especially powerful experimental tool when coupled with field-based study designs to assess the impacts of pharmaceutical pollutants in complex natural environments. Environ Toxicol Chem 2023;42:1326-1336. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Cyprinidae , Poluentes Ambientais , Poluentes Químicos da Água , Animais , Fluoxetina , Óleo de Coco , Análise Custo-Benefício , Antidepressivos , Cyprinidae/fisiologia , Preparações Farmacêuticas , Poluentes Químicos da Água/análise
10.
Glob Chang Biol ; 29(12): 3240-3255, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36943240

RESUMO

Climate change, biodiversity loss, and chemical pollution are planetary-scale emergencies requiring urgent mitigation actions. As these "triple crises" are deeply interlinked, they need to be tackled in an integrative manner. However, while climate change and biodiversity are often studied together, chemical pollution as a global change factor contributing to worldwide biodiversity loss has received much less attention in biodiversity research so far. Here, we review evidence showing that the multifaceted effects of anthropogenic chemicals in the environment are posing a growing threat to biodiversity and ecosystems. Therefore, failure to account for pollution effects may significantly undermine the success of biodiversity protection efforts. We argue that progress in understanding and counteracting the negative impact of chemical pollution on biodiversity requires collective efforts of scientists from different disciplines, including but not limited to ecology, ecotoxicology, and environmental chemistry. Importantly, recent developments in these fields have now enabled comprehensive studies that could efficiently address the manifold interactions between chemicals and ecosystems. Based on their experience with intricate studies of biodiversity, ecologists are well equipped to embrace the additional challenge of chemical complexity through interdisciplinary collaborations. This offers a unique opportunity to jointly advance a seminal frontier in pollution ecology and facilitate the development of innovative solutions for environmental protection.


Assuntos
Ecossistema , Poluição Ambiental , Biodiversidade , Ecologia , Conservação dos Recursos Naturais , Mudança Climática
11.
Curr Biol ; 33(3): R91-R95, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36750029

RESUMO

Microalgae, in the strictest definition, are eukaryotic, unicellular microorganisms that are photosynthetic and typically have an aquatic lifestyle. Despite the fact that cyanobacteria (or 'blue-green algae') are prokaryotic, and are therefore not true algae, we have included them in this overview because they have a similar physiology and ecology to eukaryotic microalgae, and share many biotechnological applications. In this Primer, we discuss the diversity of microalgae, their evolutionary origin and ecological importance, the role they have played in human affairs so far, and how they can help to accelerate the transition to a more sustainable society.


Assuntos
Cianobactérias , Microalgas , Humanos , Biotecnologia , Eucariotos , Células Eucarióticas
13.
iScience ; 25(12): 105672, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36536674

RESUMO

Pharmaceutical pollution represents a rapidly growing threat to ecosystems worldwide. Drugs are now commonly detected in the tissues of wildlife and have the potential to alter the natural expression of behavior, though relatively little is known about how pharmaceuticals impact predator-prey interactions. We conducted parallel laboratory experiments using larval odonates (dragonfly and damselfly nymphs) to investigate the effects of exposure to two pharmaceuticals, cetirizine and citalopram, and their mixture on the outcomes of predator-prey interactions. We found that exposure to both compounds elevated dragonfly activity and impacted their predation success and efficiency in complex ways. While exposure to citalopram reduced predation efficiency, exposure to cetirizine showed varied effects, with predation success being enhanced in some contexts but impaired in others. Our findings underscore the importance of evaluating pharmaceutical effects under multiple contexts and indicate that these compounds can affect predator-prey outcomes at sublethal concentrations.

14.
Chemosphere ; 309(Pt 1): 136604, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36179924

RESUMO

Pharmaceutical residues discharged through insufficiently treated or untreated wastewater enter aquatic environments, where they may adversely impact organisms such as aquatic invertebrates. Ozonation, an advanced wastewater treatment technique, has been successfully implemented to enhance the removal of a broad range of pharmaceuticals, however diverse byproducts and transformation products that are formed during the ozonation process make it difficult to predict how ozonated wastewater may affect aquatic biota. The aim of this study was to investigate effects on fatty acid metabolites, oxylipins, in a common invertebrate species, damselfly larvae, after on-site exposure to conventional wastewater treatment plant (WWTP) effluent and additionally ozonated effluent at a full-scale WWTP. Subsequent ozonation of the conventionally treated wastewater was assessed in terms of i) removal of pharmaceuticals and ii) potential sub-lethal effects on the oxylipidome. Northern damselfly (Coenagrion hastulatum) larvae were exposed for six days in the treatment plant facility to either conventional WWTP effluent or ozonated effluent and the effects on pharmaceutical levels and oxylipin levels were compared with those from tap water control exposure. Ozonation removed pharmaceuticals at an average removal efficiency of 67% (ozone dose of 0.49 g O3/g DOC). Of 38 pharmaceuticals detected in the effluent, 16 were removed to levels below the limit of quantification by ozonation. Levels of two oxylipins, 12(13)-EpODE and 15(16)-EpODE, were reduced in larvae exposed to the conventionally treated wastewater in comparison to the tap water control. 15(16)-EpODE was reduced in the larvae exposed to ozonated effluent in comparison to the tap water control. One oxylipin, 8-HETE, was significantly lower in larvae exposed to conventional WWTP effluent compared to ozonated effluent. In conclusion, the study provides proof-of-principle that damselfly larvae can be used on-site to test the impact of differentially treated wastewater.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Animais , Águas Residuárias/química , Oxilipinas , Larva , Purificação da Água/métodos , Ozônio/química , Poluentes Químicos da Água/análise , Água , Preparações Farmacêuticas , Eliminação de Resíduos Líquidos/métodos
15.
Curr Biol ; 32(16): R863-R865, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35998590

RESUMO

Gustv Hellström and colleagues introduce acoustic telemetry used to track movements and behaviors of aquatic animals.


Assuntos
Acústica , Telemetria , Animais , Movimento
16.
Curr Biol ; 32(13): R727-R730, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820379

RESUMO

In this Quick guide, Bertram et al. discuss the environmental sources of endocrine-disrupting chemicals and their effects on biological systems.


Assuntos
Disruptores Endócrinos , Disruptores Endócrinos/toxicidade
17.
Science ; 377(6603): 259-260, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857602
19.
Trends Ecol Evol ; 37(9): 789-802, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35718586

RESUMO

Chemical pollution is among the fastest-growing agents of global change. Synthetic chemicals with diverse modes-of-action are being detected in the tissues of wildlife and pervade entire food webs. Although such pollutants can elicit a range of sublethal effects on individual organisms, research on how chemical pollutants affect animal groups is severely lacking. Here we synthesise research from two related, but largely segregated fields - ecotoxicology and behavioural ecology - to examine pathways by which chemical contaminants could disrupt processes that govern the emergence, self-organisation, and collective function of animal groups. Our review provides a roadmap for prioritising the study of chemical pollutants within the context of sociality and highlights important methodological advancements for future research.


Assuntos
Poluentes Ambientais , Animais , Animais Selvagens , Ecologia , Poluentes Ambientais/toxicidade
20.
Sci Rep ; 12(1): 6830, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474093

RESUMO

Wastewater treatment plant effluents have been identified as a major contributor to increasing anthropogenic pollution in aquatic environments worldwide. Yet, little is known about the potentially adverse effects of wastewater treatment plant effluent on aquatic invertebrates. In this study, we assessed effects of wastewater effluent on the behaviour and metabolic profiles of damselfly larvae (Coenagrion hastulatum), a common aquatic invertebrate species. Four key behavioural traits: activity, boldness, escape response, and foraging (traits all linked tightly to individual fitness) were studied in larvae before and after one week of exposure to a range of effluent dilutions (0, 50, 75, 100%). Effluent exposure reduced activity and foraging, but generated faster escape response. Metabolomic analyses via targeted and non-targeted mass spectrometry methods revealed that exposure caused significant changes to 14 individual compounds (4 amino acids, 3 carnitines, 3 lysolipids, 1 peptide, 2 sugar acids, 1 sugar). Taken together, these compound changes indicate an increase in protein metabolism and oxidative stress. Our findings illustrate that wastewater effluent can affect both behavioural and physiological traits of aquatic invertebrates, and as such might pose an even greater threat to aquatic ecosystems than previously assumed. More long-term studies are now needed evaluate if these changes are linked to adverse effects on fitness. The combination of behavioural and metabolomic assessments provide a promising tool for detecting effects of wastewater effluent, on multiple biological levels of organisation, in aquatic ecosystems.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Animais , Ecossistema , Invertebrados/metabolismo , Larva/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA