Assuntos
Asma , Humanos , Asma/fisiopatologia , Masculino , Feminino , Pulmão/fisiopatologia , AdultoRESUMO
In patients with immune thrombotic thrombocytopenic purpura (iTTP), autoantibodies against the metalloprotease ADAMTS13 lead to catastrophic microvascular thrombosis. However, the potential benefits of recombinant human ADAMTS13 (rADAMTS13) in patients with iTTP remain unknown. Here, we report the clinical use of rADAMTS13, which resulted in the rapid suppression of disease activity and complete recovery in a critically ill patient whose condition had proved to be refractory to all available treatments. We also show that rADAMTS13 causes immune complex formation, which saturates the autoantibody and may promote its clearance. Our data support the role of rADAMTS13 as a novel adjunctive therapy in patients with iTTP.
Assuntos
Proteína ADAMTS13 , Púrpura Trombocitopênica Trombótica , Feminino , Humanos , Proteína ADAMTS13/imunologia , Proteína ADAMTS13/uso terapêutico , Complexo Antígeno-Anticorpo/sangue , Complexo Antígeno-Anticorpo/imunologia , Autoanticorpos/sangue , Autoanticorpos/imunologia , Púrpura Trombocitopênica Trombótica/diagnóstico , Púrpura Trombocitopênica Trombótica/tratamento farmacológico , Púrpura Trombocitopênica Trombótica/imunologia , Púrpura Trombocitopênica Trombótica/terapia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/uso terapêutico , Adulto , Negro ou Afro-Americano , Troca Plasmática , Resultado do TratamentoRESUMO
The complete blood count is an important screening tool for healthy adults and is the most commonly ordered test at periodic physical exams. However, results are usually interpreted relative to one-size-fits-all reference intervals, undermining the goal of precision medicine to tailor medical care to the needs of individual patients based on their unique characteristics. Here we show that standard complete blood count indices in healthy adults have robust homeostatic setpoints that are patient-specific and stable, with the typical healthy adult's set of 9 blood count setpoints distinguishable from 98% of others, and with these differences persisting for decades. These setpoints reflect a deep physiologic phenotype, enabling improved detection of both acquired and genetic determinants of hematologic regulation, including discovery of multiple novel loci via GWAS analyses. Patient-specific reference intervals derived from setpoints enable more accurate personalized risk assessment, and the setpoints themselves are significantly correlated with mortality risk, providing new opportunities to enhance patient-specific screening and early intervention. This study shows complete blood count setpoints are sufficiently stable and patient-specific to help realize the promise of precision medicine for healthy adults.
RESUMO
BACKGROUND: The function of the thymus in human adults is unclear, and routine removal of the thymus is performed in a variety of surgical procedures. We hypothesized that the adult thymus is needed to sustain immune competence and overall health. METHODS: We evaluated the risk of death, cancer, and autoimmune disease among adult patients who had undergone thymectomy as compared with demographically matched controls who had undergone similar cardiothoracic surgery without thymectomy. T-cell production and plasma cytokine levels were also compared in a subgroup of patients. RESULTS: After exclusions, 1420 patients who had undergone thymectomy and 6021 controls were included in the study; 1146 of the patients who had undergone thymectomy had a matched control and were included in the primary cohort. At 5 years after surgery, all-cause mortality was higher in the thymectomy group than in the control group (8.1% vs. 2.8%; relative risk, 2.9; 95% confidence interval [CI], 1.7 to 4.8), as was the risk of cancer (7.4% vs. 3.7%; relative risk, 2.0; 95% CI, 1.3 to 3.2). Although the risk of autoimmune disease did not differ substantially between the groups in the overall primary cohort (relative risk, 1.1; 95% CI, 0.8 to 1.4), a difference was found when patients with preoperative infection, cancer, or autoimmune disease were excluded from the analysis (12.3% vs. 7.9%; relative risk, 1.5; 95% CI, 1.02 to 2.2). In an analysis involving all patients with more than 5 years of follow-up (with or without a matched control), all-cause mortality was higher in the thymectomy group than in the general U.S. population (9.0% vs. 5.2%), as was mortality due to cancer (2.3% vs. 1.5%). In the subgroup of patients in whom T-cell production and plasma cytokine levels were measured (22 in the thymectomy group and 19 in the control group; mean follow-up, 14.2 postoperative years), those who had undergone thymectomy had less new production of CD4+ and CD8+ lymphocytes than controls (mean CD4+ signal joint T-cell receptor excision circle [sjTREC] count, 1451 vs. 526 per microgram of DNA [P = 0.009]; mean CD8+ sjTREC count, 1466 vs. 447 per microgram of DNA [P<0.001]) and higher levels of proinflammatory cytokines in the blood. CONCLUSIONS: In this study, all-cause mortality and the risk of cancer were higher among patients who had undergone thymectomy than among controls. Thymectomy also appeared be associated with an increased risk of autoimmune disease when patients with preoperative infection, cancer, or autoimmune disease were excluded from the analysis. (Funded by the Tracey and Craig A. Huff Harvard Stem Cell Institute Research Support Fund and others.).
Assuntos
Doenças Autoimunes , Timectomia , Humanos , Adulto , Timectomia/efeitos adversos , Timo , Linfócitos T CD8-Positivos , Citocinas , Doenças Autoimunes/complicaçõesRESUMO
Examination of red blood cell (RBC) morphology in peripheral blood smears can help diagnose hematologic diseases, even in resource-limited settings, but this analysis remains subjective and semiquantitative with low throughput. Prior attempts to develop automated tools have been hampered by their poor reproducibility and limited clinical validation. Here, we present a novel, open-source machine-learning approach (denoted as RBC-diff) to quantify abnormal RBCs in peripheral smear images and generate an RBC morphology differential. RBC-diff cell counts showed high accuracy for single-cell classification (mean AUC, 0.93) and quantitation across smears (mean R2, 0.76 compared with experts, interexperts R2, 0.75). RBC-diff counts were concordant with the clinical morphology grading for 300 000+ images and recovered the expected pathophysiologic signals in diverse clinical cohorts. Criteria using RBC-diff counts distinguished thrombotic thrombocytopenic purpura and hemolytic uremic syndrome from other thrombotic microangiopathies, providing greater specificity than clinical morphology grading (72% vs 41%; P < .001) while maintaining high sensitivity (94% to 100%). Elevated RBC-diff schistocyte counts were associated with increased 6-month all-cause mortality in a cohort of 58 950 inpatients (9.5% mortality for schist. >1%, vs 4.7% for schist; <0.5%; P < .001) after controlling for comorbidities, demographics, clinical morphology grading, and blood count indices. RBC-diff also enabled the estimation of single-cell volume-morphology distributions, providing insight into the influence of morphology on routine blood count measures. Our codebase and expert-annotated images are included here to spur further advancement. These results illustrate that computer vision can enable rapid and accurate quantitation of RBC morphology, which may provide value in both clinical and research contexts.
Assuntos
Eritrócitos Anormais , Doenças Hematológicas , Processamento de Imagem Assistida por Computador , Humanos , Eritrócitos Anormais/citologia , Doenças Hematológicas/diagnóstico por imagem , Doenças Hematológicas/patologia , Prognóstico , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/normas , Aprendizado de Máquina , Forma CelularRESUMO
Inflammation is the physiologic reaction to cellular and tissue damage caused by trauma, ischemia, infection, and other pathologic conditions. Elevation of white blood cell count (WBC) and altered levels of other acute phase reactants are cardinal signs of inflammation, but the dynamics of these changes and their resolution are not well established. Here we studied inflammatory recovery from trauma, ischemia, and infection by tracking longitudinal dynamics of clinical laboratory measurements in hospitalized patients. We identified a universal recovery trajectory defined by exponential WBC decay and delayed linear growth of platelet count (PLT). Co-regulation of WBC-PLT dynamics is a fundamental mechanism of acute inflammatory recovery and provides a generic approach for identifying high-risk patients: 32x relative risk (RR) of adverse outcomes for cardiac surgery, 9x RR of death from COVID-19, 9x RR of death from sepsis, and 5x RR of death from myocardial infarction.
Assuntos
COVID-19 , Humanos , Inflamação , Contagem de Leucócitos , Leucócitos , Contagem de PlaquetasRESUMO
Sudden cardiac death, arising from abnormal electrical conduction, occurs frequently in patients with coronary heart disease. Myocardial ischemia simultaneously induces arrhythmia and massive myocardial leukocyte changes. In this study, we optimized a mouse model in which hypokalemia combined with myocardial infarction triggered spontaneous ventricular tachycardia in ambulatory mice, and we showed that major leukocyte subsets have opposing effects on cardiac conduction. Neutrophils increased ventricular tachycardia via lipocalin-2 in mice, whereas neutrophilia associated with ventricular tachycardia in patients. In contrast, macrophages protected against arrhythmia. Depleting recruited macrophages in Ccr2 -/- mice or all macrophage subsets with Csf1 receptor inhibition increased both ventricular tachycardia and fibrillation. Higher arrhythmia burden and mortality in Cd36 -/- and Mertk -/- mice, viewed together with reduced mitochondrial integrity and accelerated cardiomyocyte death in the absence of macrophages, indicated that receptor-mediated phagocytosis protects against lethal electrical storm. Thus, modulation of leukocyte function provides a potential therapeutic pathway for reducing the risk of sudden cardiac death.
RESUMO
Autonomic nerves control organ function through the sympathetic and parasympathetic branches, which have opposite effects. In the bone marrow, sympathetic (adrenergic) nerves promote hematopoiesis; however, how parasympathetic (cholinergic) signals modulate hematopoiesis is unclear. Here, we show that B lymphocytes are an important source of acetylcholine, a neurotransmitter of the parasympathetic nervous system, which reduced hematopoiesis. Single-cell RNA sequencing identified nine clusters of cells that expressed the cholinergic α7 nicotinic receptor (Chrna7) in the bone marrow stem cell niche, including endothelial and mesenchymal stromal cells (MSCs). Deletion of B cell-derived acetylcholine resulted in the differential expression of various genes, including Cxcl12 in leptin receptor+ (LepR+) stromal cells. Pharmacologic inhibition of acetylcholine signaling increased the systemic supply of inflammatory myeloid cells in mice and humans with cardiovascular disease.
Assuntos
Acetilcolina , Hematopoese , Animais , Linfócitos B , Colinérgicos , Hematopoese/genética , Camundongos , Nicho de Células-TroncoRESUMO
We have previously identified bronchial generations 5-7 as the locus of maximum contribution to the convective portion of the phase III slope in computed tomography (CT)-based lung models of patients with asthma. In the present study, we examined how phase III slope is generated locally, by specifically interrogating at individual branch points, the necessary condition for a phase III slope to occur: some degree of convective flow sequencing between any two daughter branches that have a heterogeneity in gas washout concentration between them. Flow sequencing at individual branch points showed a wide range of values, including branch points where flow sequencing was such that phase III slopes were negative locally. Yet, the net effect in the 24 bronchial trees that we studied was that flow sequencing between pairs of less and better ventilated units most frequently drove positive phase III slopes in generations 5-7. By investigating the link of local flow sequencing between any two daughter branches to the corresponding heterogeneity of mechanical lung properties, heterogeneity of compliance was seen to be a major determinant of flow sequencing. In these bronchial structures, compliance heterogeneity was essentially brought about by volume asymmetry resulting from terminating pathways within the three-dimensional (3-D) confines of the lung contours. We conclude that the serial and parallel combination of lung mechanical properties at individual branch points in an asymmetrical branching network generates flow sequencing in mid-range conductive airways, leading to a positive at-mouth phase III slope.NEW & NOTEWORTHY Conceptually, the simplest way to obtain a sloping phase III during a washout exhalation is when there is convective flow sequencing between two lung units, such that the better ventilated unit contributes relatively more to exhaled flow at the beginning of phase III in the exhalation. Here, we show how compliance heterogeneity across the serial and parallel arrangement of branch points in bronchial trees of patients with asthma leads to flow sequencing, and thus phase III slopes of positive sign at the patient's mouth.
Assuntos
Asma , Pulmão , Brônquios , Expiração , Humanos , Pulmão/diagnóstico por imagemRESUMO
Inflammation is the physiologic reaction to cellular and tissue damage caused by pathologic processes including trauma, infection, and ischemia 1 . Effective inflammatory responses integrate molecular and cellular functions to prevent further tissue damage, initiate repair, and restore homeostasis, while futile or dysfunctional responses allow escalating injury, delay recovery, and may hasten death 2 . Elevation of white blood cell count (WBC) and altered levels of other acute phase reactants are cardinal signs of inflammation, but the dynamics of these changes and their resolution are not established 3,4 . Patient responses appear to vary dramatically with no clearly defined signs of good prognosis, leaving physicians reliant on qualitative interpretations of laboratory trends 4,5 . We retrospectively, observationally studied the human acute inflammatory response to trauma, ischemia, and infection by tracking the longitudinal dynamics of cellular and serum markers in hospitalized patients. Unexpectedly, we identified a conserved pattern of recovery defined by co-regulation of WBC and platelet (PLT) populations. Across all inflammatory conditions studied, recovering patients followed a consistent WBC-PLT trajectory shape that is well-approximated by exponential WBC decay and delayed linear PLT growth. This recovery trajectory shape may represent a fundamental archetype of human physiologic response at the cellular population scale, and provides a generic approach for identifying high-risk patients: 32x relative risk of adverse outcomes for cardiac surgery patients, 9x relative risk of death for COVID-19, and 5x relative risk of death for myocardial infarction.
RESUMO
This study aimed to identify the predictive capacity of wellness questionnaires on measures of training load using machine learning methods. The distributions of, and dose-response between, wellness and other load measures were also examined, offering insights into response patterns. Data (n= 14,109) were collated from an athlete management systems platform (Catapult Sports, Melbourne, Australia) and were split across three sports (cricket, rugby league and football) with data analysis conducted in R (Version 3.4.3). Wellness (sleep quality, readiness to train, general muscular soreness, fatigue, stress, mood, recovery rating and motivation) as the dependent variable, and sRPE, sRPE-TL and markers of external load (total distance and m.min-1) as independent variables were included for analysis. Classification and regression tree models showed high cross-validated error rates across all sports (i.e., > 0.89) and low model accuracy (i.e., < 5% of variance explained by each model) with similar results demonstrated using random forest models. These results suggest wellness items have limited predictive capacity in relation to internal and external load measures. This result was consistent despite varying statistical approaches (regression, classification and random forest models) and transformation of wellness scores. These findings indicate practitioners should exercise caution when interpreting and applying wellness responses.
Assuntos
Nível de Saúde , Aprendizado de Máquina , Condicionamento Físico Humano/fisiologia , Condicionamento Físico Humano/psicologia , Esportes/fisiologia , Esportes/psicologia , Inquéritos e Questionários , Afeto , Críquete/fisiologia , Críquete/psicologia , Árvores de Decisões , Fadiga/diagnóstico , Futebol Americano/fisiologia , Futebol Americano/psicologia , Sistemas de Informação Geográfica , Humanos , Motivação , Mialgia/diagnóstico , Percepção/fisiologia , Esforço Físico/fisiologia , Análise de Regressão , Sono/fisiologia , Futebol/fisiologia , Futebol/psicologia , Estresse Psicológico/diagnóstico , Dispositivos Eletrônicos VestíveisRESUMO
BACKGROUND: The development and widespread use of an effective SARS-CoV-2 vaccine could prevent substantial morbidity and mortality associated with COVID-19 and mitigate the secondary effects associated with non-pharmaceutical interventions. METHODS: We used an age-structured, expanded SEIR model with social contact matrices to assess age-specific vaccine allocation strategies in India. We used state-specific age structures and disease transmission coefficients estimated from confirmed incident cases of COVID-19 between 1 July and 31 August 2020. Simulations were used to investigate the relative reduction in mortality and morbidity of vaccine allocation strategies based on prioritizing different age groups, and the interactions of these strategies with concurrent non-pharmaceutical interventions. Given the uncertainty associated with COVID-19 vaccine development, we varied vaccine characteristics in the modelling simulations. RESULTS: Prioritizing COVID-19 vaccine allocation for older populations (i.e., >60 years) led to the greatest relative reduction in deaths, regardless of vaccine efficacy, control measures, rollout speed, or immunity dynamics. Preferential vaccination of this group often produced relatively higher total symptomatic infections and more pronounced estimates of peak incidence than other assessed strategies. Vaccine efficacy, immunity type, target coverage, and rollout speed significantly influenced overall strategy effectiveness, with the time taken to reach target coverage significantly affecting the relative mortality benefit comparative to no vaccination. CONCLUSIONS: Our findings support global recommendations to prioritize COVID-19 vaccine allocation for older age groups. Relative differences between allocation strategies were reduced as the speed of vaccine rollout was increased. Optimal vaccine allocation strategies will depend on vaccine characteristics, strength of concurrent non-pharmaceutical interventions, and region-specific goals.
Assuntos
Vacinas contra COVID-19/provisão & distribuição , COVID-19/prevenção & controle , Modelos Teóricos , SARS-CoV-2/imunologia , Adulto , Idoso , Feminino , Humanos , Índia , Pessoa de Meia-Idade , Vacinação , Adulto JovemRESUMO
Importance: Coronavirus disease 2019 (COVID-19) is an acute respiratory illness with a high rate of hospitalization and mortality. Biomarkers are urgently needed for patient risk stratification. Red blood cell distribution width (RDW), a component of complete blood counts that reflects cellular volume variation, has been shown to be associated with elevated risk for morbidity and mortality in a wide range of diseases. Objective: To investigate whether an association between mortality risk and elevated RDW at hospital admission and during hospitalization exists in patients with COVID-19. Design, Setting, and Participants: This cohort study included adults diagnosed with SARS-CoV-2 infection and admitted to 1 of 4 hospitals in the Boston, Massachusetts area (Massachusetts General Hospital, Brigham and Women's Hospital, North Shore Medical Center, and Newton-Wellesley Hospital) between March 4, 2020, and April 28, 2020. Main Outcomes and Measures: The main outcome was patient survival during hospitalization. Measures included RDW at admission and during hospitalization, with an elevated RDW defined as greater than 14.5%. Relative risk (RR) of mortality was estimated by dividing the mortality of those with an elevated RDW by the mortality of those without an elevated RDW. Mortality hazard ratios (HRs) and 95% CIs were estimated using a Cox proportional hazards model. Results: A total of 1641 patients were included in the study (mean [SD] age, 62[18] years; 886 men [54%]; 740 White individuals [45%] and 497 Hispanic individuals [30%]; 276 nonsurvivors [17%]). Elevated RDW (>14.5%) was associated with an increased mortality risk in patients of all ages. The RR for the entire cohort was 2.73, with a mortality rate of 11% in patients with normal RDW (1173) and 31% in those with an elevated RDW (468). The RR in patients younger than 50 years was 5.25 (normal RDW, 1% [n = 341]; elevated RDW, 8% [n = 65]); 2.90 in the 50- to 59-year age group (normal RDW, 8% [n = 256]; elevated RDW, 24% [n = 63]); 3.96 in the 60- to 69-year age group (normal RDW, 8% [n = 226]; elevated RDW, 30% [104]); 1.45 in the 70- to 79-year age group (normal RDW, 23% [n = 182]; elevated RDW, 33% [n = 113]); and 1.59 in those ≥80 years (normal RDW, 29% [n = 168]; elevated RDW, 46% [n = 123]). RDW was associated with mortality risk in Cox proportional hazards models adjusted for age, D-dimer (dimerized plasmin fragment D) level, absolute lymphocyte count, and common comorbidities such as diabetes and hypertension (hazard ratio of 1.09 per 0.5% RDW increase and 2.01 for an RDW >14.5% vs ≤14.5%; P < .001). Patients whose RDW increased during hospitalization had higher mortality compared with those whose RDW did not change; for those with normal RDW, mortality increased from 6% to 24%, and for those with an elevated RDW at admission, mortality increased from 22% to 40%. Conclusions and Relevance: Elevated RDW at the time of hospital admission and an increase in RDW during hospitalization were associated with increased mortality risk for patients with COVID-19 who received treatment at 4 hospitals in a large academic medical center network.
Assuntos
Infecções por Coronavirus/mortalidade , Índices de Eritrócitos , Eritrócitos , Hospitalização , Pneumonia Viral/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Betacoronavirus , Biomarcadores/sangue , Boston/epidemiologia , COVID-19 , Coronavirus , Infecções por Coronavirus/sangue , Feminino , Hospitais , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Admissão do Paciente , Pneumonia Viral/sangue , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Medição de Risco , SARS-CoV-2 , Síndrome Respiratória Aguda GraveRESUMO
BACKGROUND: Within asthma, the small airways (≤2 mm in diameter) play an important role in pathophysiology. Using a combined clinical-computational approach, we sought to more precisely evaluate the contribution of the small airways to deep-breath induced airway dilation (in the absence of bronchial challenge), which may be impaired in severe asthma. METHODS: A patient-based computational model of the FOT was used to examine the sensitivity and specificity of FOT signals to small airways constriction at frequencies of 2 & 8 Hz. A clinical study of moderate to severe asthmatics (n = 24), and healthy volunteers (n = 10) was performed to evaluate correlations between baseline and post deep inspiration (following bronchodilator withhold and in the absence of prior bronchial challenge) forced oscillation technique (FOT) responses (at 2Hz and 8Hz) and asthma treatment intensity, spirometry, airway hyper-responsiveness and airway inflammation. RESULTS: Computational modelling demonstrated that baseline resistance measures at 2Hz are both sensitive and specific to anatomical narrowing in the small airways. Furthermore, small airways resistance was significantly increased in asthmatics compared to health. Despite these differences, there were no noticeable differences between asthmatics and healthy volunteers in resistive measures following deep inspiration (DI) and DI responses of small airways were amplified in the presence of spirometry defined airflow limitation. CONCLUSIONS: These results suggest that the small airways demonstrate increased resistance in moderate-to-severe asthma but dilate normally in response to deep inspirations in the absence of bronchial challenge. This suggests that effective targeting of the small airways is required to achieve functional improvements in moderate-severe asthmatic patients.
Assuntos
Asma/diagnóstico , Asma/fisiopatologia , Testes de Provocação Brônquica/métodos , Broncoconstrição , Adulto , Idoso , Resistência das Vias Respiratórias , Feminino , Humanos , Masculino , Cloreto de Metacolina , Pessoa de Meia-Idade , Modelagem Computacional Específica para o Paciente , Sensibilidade e Especificidade , Índice de Gravidade de Doença , EspirometriaRESUMO
Simulations of patient-based lungs suggest that proning reduces ventilation heterogeneity in overweight and obese subjects but increases heterogeneity in non-overweight subjects. This suggests proning may be beneficial for overweight #COVID19 patients. https://bit.ly/2MfCiyk.
RESUMO
BACKGROUND: Recurrent myocardial infarction (MI) is common in patients with coronary artery disease and is associated with high mortality. Long-term reprogramming of myeloid progenitors occurs in response to inflammatory stimuli and alters the organism's response to secondary inflammatory challenges. OBJECTIVES: This study examined the effect of recurrent MI on bone marrow response and cardiac inflammation. METHODS: The investigators developed a surgical mouse model in which 2 subsequent MIs affected different left ventricular regions in the same mouse. Recurrent MI was induced by ligating the left circumflex artery followed by the left anterior descending coronary artery branch. The study characterized the resulting ischemia by whole-heart fluorescent coronary angiography after optical organ clearing and by cardiac magnetic resonance imaging. RESULTS: A first MI-induced bone marrow "memory" via a circulating signal, reducing hematopoietic maintenance factor expression in bone marrow macrophages. This dampened the organism's reaction to subsequent events. Despite a similar extent of injury according to troponin levels, recurrent MI caused reduced emergency hematopoiesis and less leukocytosis than a first MI. Consequently, fewer leukocytes migrated to the ischemic myocardium. The hematopoietic response to lipopolysaccharide was also mitigated after a previous MI. The increase of white blood count in 28 patients was lower after recurrent MI compared with their first MI. CONCLUSIONS: The data suggested that hematopoietic and innate immune responses are shaped by a preceding MI.
Assuntos
Infarto Miocárdico de Parede Anterior/imunologia , Modelos Animais de Doenças , Hematopoese , Idoso , Idoso de 80 Anos ou mais , Animais , Infarto Miocárdico de Parede Anterior/sangue , Feminino , Humanos , Leucocitose , Macrófagos/fisiologia , Masculino , Camundongos , Pessoa de Meia-Idade , Parabiose , Recidiva , Estudos RetrospectivosRESUMO
Modeling has enabled fundamental advances in our understanding of the mechanisms of health and disease for centuries, since at least the time of William Harvey almost 500 years ago. Recent technological advances in molecular methods, computation, and imaging generate optimism that mathematical modeling will enable the biomedical research community to accelerate its efforts in unraveling the molecular, cellular, tissue-, and organ-level processes that maintain health, predispose to disease, and determine response to treatment. In this review, we discuss some of the roles of mathematical modeling in the study of human physiology and pathophysiology and some challenges and opportunities in general and in two specific areas: in vivo modeling of pulmonary function and in vitro modeling of blood cell populations.