Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0298762, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38416729

RESUMO

Epilepsy affects millions of people worldwide every year and remains an open subject for research. Current development on this field has focused on obtaining computational models to better understand its triggering mechanisms, attain realistic descriptions and study seizure suppression. Controllers have been successfully applied to mitigate epileptiform activity in dynamic models written in state-space notation, whose applicability is, however, restricted to signatures that are accurately described by them. Alternatively, autoregressive modeling (AR), a typical data-driven tool related to system identification (SI), can be directly applied to signals to generate more realistic models, and since it is inherently convertible into state-space representation, it can thus be used for the artificial reconstruction and attenuation of seizures as well. Considering this, the first objective of this work is to propose an SI approach using AR models to describe real epileptiform activity. The second objective is to provide a strategy for reconstructing and mitigating such activity artificially, considering non-hybrid and hybrid controllers - designed from ictal and interictal events, respectively. The results show that AR models of relatively low order represent epileptiform activities fairly well and both controllers are effective in attenuating the undesired activity while simultaneously driving the signal to an interictal condition. These findings may lead to customized models based on each signal, brain region or patient, from which it is possible to better define shape, frequency and duration of external stimuli that are necessary to attenuate seizures.


Assuntos
Eletroencefalografia , Epilepsia , Humanos , Eletroencefalografia/métodos , Convulsões , Encéfalo , Redação
2.
PLoS Comput Biol ; 18(4): e1010027, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35417449

RESUMO

The types of epileptiform activity occurring in the sclerotic hippocampus with highest incidence are interictal-like events (II) and periodic ictal spiking (PIS). These activities are classified according to their event rates, but it is still unclear if these rate differences are consequences of underlying physiological mechanisms. Identifying new and more specific information related to these two activities may bring insights to a better understanding about the epileptogenic process and new diagnosis. We applied Poincaré map analysis and Recurrence Quantification Analysis (RQA) onto 35 in vitro electrophysiological signals recorded from slices of 12 hippocampal tissues surgically resected from patients with pharmacoresistant temporal lobe epilepsy. These analyzes showed that the II activity is related to chaotic dynamics, whereas the PIS activity is related to deterministic periodic dynamics. Additionally, it indicates that their different rates are consequence of different endogenous dynamics. Finally, by using two computational models we were able to simulate the transition between II and PIS activities. The RQA was applied to different periods of these simulations to compare the recurrences between artificial and real signals, showing that different ranges of regularity-chaoticity can be directly associated with the generation of PIS and II activities.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Epilepsia do Lobo Temporal/cirurgia , Hipocampo/cirurgia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA