Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766012

RESUMO

Genetic variation and 3D chromatin structure have major roles in gene regulation. Due to challenges in mapping chromatin conformation with haplotype-specific resolution, the effects of genetic sequence variation on 3D genome structure and gene expression imbalance remain understudied. Here, we applied Genome Architecture Mapping (GAM) to a hybrid mouse embryonic stem cell (mESC) line with high density of single nucleotide polymorphisms (SNPs). GAM resolved haplotype-specific 3D genome structures with high sensitivity, revealing extensive allelic differences in chromatin compartments, topologically associating domains (TADs), long-range enhancer-promoter contacts, and CTCF loops. Architectural differences often coincide with allele-specific differences in gene expression, mediated by Polycomb repression. We show that histone genes are expressed with allelic imbalance in mESCs, are involved in haplotype-specific chromatin contact marked by H3K27me3, and are targets of Polycomb repression through conditional knockouts of Ezh2 or Ring1b. Our work reveals highly distinct 3D folding structures between homologous chromosomes, and highlights their intricate connections with allelic gene expression.

2.
Nature ; 627(8004): 594-603, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383780

RESUMO

Although KDM5C is one of the most frequently mutated genes in X-linked intellectual disability1, the exact mechanisms that lead to cognitive impairment remain unknown. Here we use human patient-derived induced pluripotent stem cells and Kdm5c knockout mice to conduct cellular, transcriptomic, chromatin and behavioural studies. KDM5C is identified as a safeguard to ensure that neurodevelopment occurs at an appropriate timescale, the disruption of which leads to intellectual disability. Specifically, there is a developmental window during which KDM5C directly controls WNT output to regulate the timely transition of primary to intermediate progenitor cells and consequently neurogenesis. Treatment with WNT signalling modulators at specific times reveal that only a transient alteration of the canonical WNT signalling pathway is sufficient to rescue the transcriptomic and chromatin landscapes in patient-derived cells and to induce these changes in wild-type cells. Notably, WNT inhibition during this developmental period also rescues behavioural changes of Kdm5c knockout mice. Conversely, a single injection of WNT3A into the brains of wild-type embryonic mice cause anxiety and memory alterations. Our work identifies KDM5C as a crucial sentinel for neurodevelopment and sheds new light on KDM5C mutation-associated intellectual disability. The results also increase our general understanding of memory and anxiety formation, with the identification of WNT functioning in a transient nature to affect long-lasting cognitive function.


Assuntos
Cognição , Embrião de Mamíferos , Desenvolvimento Embrionário , Histona Desmetilases , Via de Sinalização Wnt , Animais , Humanos , Camundongos , Ansiedade , Cromatina/efeitos dos fármacos , Cromatina/genética , Cromatina/metabolismo , Embrião de Mamíferos/metabolismo , Perfilação da Expressão Gênica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Deficiência Intelectual/genética , Memória , Camundongos Knockout , Mutação , Neurogênese/genética , Via de Sinalização Wnt/efeitos dos fármacos
3.
iScience ; 26(1): 105695, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36582820

RESUMO

Brain-derived neurotrophic factor (BDNF) promotes neuronal differentiation and survival and is implicated in the pathogenesis of many neurological disorders. Here, we identified a novel intergenic enhancer located 170 kb from the Bdnf gene, which promotes the expression of Bdnf transcript variants during mouse neuronal differentiation and activity. Following Bdnf activation, enhancer-promoter contacts increase, and the region moves away from the repressive nuclear periphery. Bdnf enhancer activity is necessary for neuronal clustering and dendritogenesis in vitro, and for cortical development in vivo. Our findings provide the first evidence of a regulatory mechanism whereby the activation of a distal enhancer promotes Bdnf expression during brain development.

4.
Genome Res ; 31(2): 186-197, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33414108

RESUMO

Transcriptional enhancers enable exquisite spatiotemporal control of gene expression in metazoans. Enrichment of monomethylation of histone H3 lysine 4 (H3K4me1) is a major chromatin signature of transcriptional enhancers. Lysine (K)-specific demethylase 1A (KDM1A, also known as LSD1), an H3K4me2/me1 demethylase, inactivates stem-cell enhancers during the differentiation of mouse embryonic stem cells (mESCs). However, its role in undifferentiated mESCs remains obscure. Here, we show that KDM1A actively maintains the optimal enhancer status in both undifferentiated and lineage-committed cells. KDM1A occupies a majority of enhancers in undifferentiated mESCs. KDM1A levels at enhancers exhibit clear positive correlations with its substrate H3K4me2, H3K27ac, and transcription at enhancers. In Kdm1a-deficient mESCs, a large fraction of these enhancers gains additional H3K4 methylation, which is accompanied by increases in H3K27 acetylation and increased expression of both enhancer RNAs (eRNAs) and target genes. In postmitotic neurons, loss of KDM1A leads to premature activation of neuronal activity-dependent enhancers and genes. Taken together, these results suggest that KDM1A is a versatile regulator of enhancers and acts as a rheostat to maintain optimal enhancer activity by counterbalancing H3K4 methylation at enhancers.

5.
Curr Opin Neurobiol ; 59: 16-25, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31005709

RESUMO

Genome architecture plays a critical role in regulating the expression of genes that are essential for nervous system development. During neuronal differentiation, spatially and temporally regulated transcription allows neuronal migration, the growth of dendrites and axons, and at later stages, synaptic formation and the establishment of neuronal circuitry. Genome topology and relocation of gene loci within the nucleus are now regarded as key factors that contribute to transcriptional regulation. Here, we review recent work supporting the hypothesis that the dynamic organization of chromatin within the nucleus impacts gene activation in response to extrinsic signalling and during neuronal differentiation. The consequences of disruption of the genome architecture on neuronal health will be also discussed.


Assuntos
Neurônios , Transcrição Gênica , Núcleo Celular , Cromatina , Regulação da Expressão Gênica
6.
Cell Rep ; 21(10): 2879-2894, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29212033

RESUMO

Spatiotemporal regulation of gene expression depends on the cooperation of multiple mechanisms, including the functional interaction of promoters with distally located enhancers. Here, we show that, in cortical neurons, a subset of short interspersed nuclear elements (SINEs) located in the proximity of activity-regulated genes bears features of enhancers. Enhancer SINEs (eSINEs) recruit the Pol III cofactor complex TFIIIC in a stimulus-dependent manner and are transcribed by Pol III in response to neuronal depolarization. Characterization of an eSINE located in proximity to the Fos gene (FosRSINE1) indicated that the FosRSINE1-encoded transcript interacts with Pol II at the Fos promoter and mediates Fos relocation to Pol II factories, providing an unprecedented molecular link between Pol III and Pol II transcription. Strikingly, knockdown of the FosRSINE1 transcript induces defects of both cortical radial migration in vivo and activity-dependent dendritogenesis in vitro, demonstrating that FosRSINE1 acts as a strong enhancer of Fos expression in diverse physiological contexts.


Assuntos
RNA Polimerase III/metabolismo , RNA Polimerase II/metabolismo , Animais , Camundongos , Neurônios/metabolismo , Regiões Promotoras Genéticas/genética , RNA Polimerase II/genética , RNA Polimerase III/genética , Sequências Reguladoras de Ácido Nucleico/genética , Elementos Nucleotídeos Curtos e Dispersos/genética , Fatores de Transcrição TFIII/genética , Fatores de Transcrição TFIII/metabolismo , Transcrição Gênica/genética
8.
Cell Rep ; 14(5): 1000-1009, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26804915

RESUMO

Mutations in a number of chromatin modifiers are associated with human neurological disorders. KDM5C, a histone H3 lysine 4 di- and tri-methyl (H3K4me2/3)-specific demethylase, is frequently mutated in X-linked intellectual disability (XLID) patients. Here, we report that disruption of the mouse Kdm5c gene recapitulates adaptive and cognitive abnormalities observed in XLID, including impaired social behavior, memory deficits, and aggression. Kdm5c-knockout brains exhibit abnormal dendritic arborization, spine anomalies, and altered transcriptomes. In neurons, Kdm5c is recruited to promoters that harbor CpG islands decorated with high levels of H3K4me3, where it fine-tunes H3K4me3 levels. Kdm5c predominantly represses these genes, which include members of key pathways that regulate the development and function of neuronal circuitries. In summary, our mouse behavioral data strongly suggest that KDM5C mutations are causal to XLID. Furthermore, our findings suggest that loss of KDM5C function may impact gene expression in multiple regulatory pathways relevant to the clinical phenotypes.


Assuntos
Genes Ligados ao Cromossomo X , Histonas/metabolismo , Deficiência Intelectual/genética , Agressão , Animais , Encéfalo/patologia , Ilhas de CpG , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Histona Desmetilases , Lisina/metabolismo , Memória , Metilação , Camundongos Knockout , Oxirredutases N-Desmetilantes/deficiência , Oxirredutases N-Desmetilantes/metabolismo , Regiões Promotoras Genéticas , Comportamento Social , Transcrição Gênica
9.
Elife ; 42015 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-26687004

RESUMO

Dynamic post-translational modification of RNA polymerase II (RNAPII) coordinates the co-transcriptional recruitment of enzymatic complexes that regulate chromatin states and processing of nascent RNA. Extensive phosphorylation of serine residues at the largest RNAPII subunit occurs at its structurally-disordered C-terminal domain (CTD), which is composed of multiple heptapeptide repeats with consensus sequence Y1-S2-P3-T4-S5-P6-S7. Serine-5 and Serine-7 phosphorylation mark transcription initiation, whereas Serine-2 phosphorylation coincides with productive elongation. In vertebrates, the CTD has eight non-canonical substitutions of Serine-7 into Lysine-7, which can be acetylated (K7ac). Here, we describe mono- and di-methylation of CTD Lysine-7 residues (K7me1 and K7me2). K7me1 and K7me2 are observed during the earliest transcription stages and precede or accompany Serine-5 and Serine-7 phosphorylation. In contrast, K7ac is associated with RNAPII elongation, Serine-2 phosphorylation and mRNA expression. We identify an unexpected balance between RNAPII K7 methylation and acetylation at gene promoters, which fine-tunes gene expression levels.


Assuntos
Regulação da Expressão Gênica , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , RNA Polimerase II/metabolismo , Transcrição Gênica , Animais , Consenso , Metilação , Camundongos , Células NIH 3T3 , Fosforilação , Serina/metabolismo
10.
Hum Mol Genet ; 24(10): 2861-72, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25666439

RESUMO

Mutations in KDM5C are an important cause of X-linked intellectual disability in males. KDM5C encodes a histone demethylase, suggesting that alterations in chromatin landscape may contribute to disease. We used primary patient cells and biochemical approaches to investigate the effects of patient mutations on KDM5C expression, stability and catalytic activity. We report and characterize a novel nonsense mutation, c.3223delG (p.V1075Yfs*2), which leads to loss of KDM5C protein. We also characterize two KDM5C missense mutations, c.1439C>T (p.P480L) and c.1204G>T (p.D402Y) that are compatible with protein production, but compromise stability and enzymatic activity. Finally, we demonstrate that a c.2T>C mutation in the translation initiation codon of KDM5C results in translation re-start and production of a N-terminally truncated protein (p.M1_E165del) that is unstable and lacks detectable demethylase activity. Patient fibroblasts do not show global changes in histone methylation but we identify several up-regulated genes, suggesting local changes in chromatin conformation and gene expression. This thorough examination of KDM5C patient mutations demonstrates the utility of examining the molecular consequences of patient mutations on several levels, ranging from enzyme production to catalytic activity, when assessing the functional outcomes of intellectual disability mutations.


Assuntos
Histona Desmetilases/genética , Deficiência Intelectual/genética , Mutação , Adolescente , Adulto , Idoso , Criança , Cromatina/enzimologia , Cromatina/genética , Estabilidade Enzimática , Feminino , Genes Ligados ao Cromossomo X , Histona Desmetilases/metabolismo , Histonas/metabolismo , Humanos , Lactente , Deficiência Intelectual/enzimologia , Masculino , Metilação , Adulto Jovem
11.
Nat Biotechnol ; 33(1): 58-63, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25437882

RESUMO

Human induced pluripotent stem cells (hiPSCs) are useful in disease modeling and drug discovery, and they promise to provide a new generation of cell-based therapeutics. To date there has been no systematic evaluation of the most widely used techniques for generating integration-free hiPSCs. Here we compare Sendai-viral (SeV), episomal (Epi) and mRNA transfection mRNA methods using a number of criteria. All methods generated high-quality hiPSCs, but significant differences existed in aneuploidy rates, reprogramming efficiency, reliability and workload. We discuss the advantages and shortcomings of each approach, and present and review the results of a survey of a large number of human reprogramming laboratories on their independent experiences and preferences. Our analysis provides a valuable resource to inform the use of specific reprogramming methods for different laboratories and different applications, including clinical translation.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Humanos
12.
Annu Rev Genet ; 48: 237-68, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25195505

RESUMO

Epigenetic control of gene expression programs is essential for normal organismal development and cellular function. Abrogation of epigenetic regulation is seen in many human diseases, including cancer and neuropsychiatric disorders, where it can affect disease etiology and progression. Abnormal epigenetic profiles can serve as biomarkers of disease states and predictors of disease outcomes. Therefore, epigenetics is a key area of clinical investigation in diagnosis, prognosis, and treatment. In this review, we give an overarching view of epigenetic mechanisms of human disease. Genetic mutations in genes that encode chromatin regulators can cause monogenic disease or are incriminated in polygenic, multifactorial diseases. Environmental stresses can also impact directly on chromatin regulation, and these changes can increase the risk of, or directly cause, disease. Finally, emerging evidence suggests that exposure to environmental stresses in older generations may predispose subsequent generations to disease in a manner that involves the transgenerational inheritance of epigenetic information.


Assuntos
Epigênese Genética , Doenças Genéticas Inatas , Neoplasias/genética , Cromatina , Humanos
13.
Cell Rep ; 7(1): 113-26, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24685137

RESUMO

How epigenetic information is transmitted from generation to generation remains largely unknown. Deletion of the C. elegans histone H3 lysine 4 dimethyl (H3K4me2) demethylase spr-5 leads to inherited accumulation of the euchromatic H3K4me2 mark and progressive decline in fertility. Here, we identified multiple chromatin-modifying factors, including H3K4me1/me2 and H3K9me3 methyltransferases, an H3K9me3 demethylase, and an H3K9me reader, which either suppress or accelerate the progressive transgenerational phenotypes of spr-5 mutant worms. Our findings uncover a network of chromatin regulators that control the transgenerational flow of epigenetic information and suggest that the balance between euchromatic H3K4 and heterochromatic H3K9 methylation regulates transgenerational effects on fertility.


Assuntos
Caenorhabditis elegans/genética , Histonas/genética , Histonas/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética , Epigenômica , Metilação , Metiltransferases/metabolismo , Oxirredutases N-Desmetilantes/genética
14.
Mol Biol Cell ; 25(6): 904-15, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24430871

RESUMO

Methylated histones H3K9 and H3K27 are canonical epigenetic silencing modifications in metazoan organisms, but the relationship between the two modifications has not been well characterized. H3K9me3 coexists with H3K27me3 in pluripotent and differentiated cells. However, we find that the functioning of H3K9me3 is altered by H3S10 phosphorylation in differentiated postmitotic osteoblasts and cycling B cells. Deposition of H3K9me3/S10ph at silent genes is partially mediated by the mitogen- and stress-activated kinases (MSK1/2) and the Aurora B kinase. Acquisition of H3K9me3/S10ph during differentiation correlates with loss of paused S5 phosphorylated RNA polymerase II, which is present on Polycomb-regulated genes in embryonic stem cells. Reduction of the levels of H3K9me3/S10ph by kinase inhibition results in increased binding of RNAPIIS5ph and the H3K27 methyltransferase Ezh1 at silent promoters. Our results provide evidence of a novel developmentally regulated methyl-phospho switch that modulates Polycomb regulation in differentiated cells and stabilizes repressed states.


Assuntos
Linfócitos B/metabolismo , Epigênese Genética , Histonas/genética , Osteoblastos/metabolismo , Proteínas do Grupo Polycomb/genética , RNA Polimerase II/genética , Animais , Aurora Quinase B/antagonistas & inibidores , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Linfócitos B/citologia , Sítios de Ligação , Diferenciação Celular/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Histonas/metabolismo , Ativação Linfocitária , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Metilação , Camundongos , Osteoblastos/citologia , Fosforilação , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , RNA Polimerase II/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Baço/citologia , Baço/metabolismo
16.
Cell Stem Cell ; 10(2): 157-70, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22305566

RESUMO

Polycomb repressor complexes (PRCs) are important chromatin modifiers fundamentally implicated in pluripotency and cancer. Polycomb silencing in embryonic stem cells (ESCs) can be accompanied by active chromatin and primed RNA polymerase II (RNAPII), but the relationship between PRCs and RNAPII remains unclear genome-wide. We mapped PRC repression markers and four RNAPII states in ESCs using ChIP-seq, and found that PRC targets exhibit a range of RNAPII variants. First, developmental PRC targets are bound by unproductive RNAPII (S5p(+)S7p(-)S2p(-)) genome-wide. Sequential ChIP, Ring1B depletion, and genome-wide correlations show that PRCs and RNAPII-S5p physically bind to the same chromatin and functionally synergize. Second, we identify a cohort of genes marked by PRC and elongating RNAPII (S5p(+)S7p(+)S2p(+)); they produce mRNA and protein, and their expression increases upon PRC1 knockdown. We show that this group of PRC targets switches between active and PRC-repressed states within the ESC population, and that many have roles in metabolism.


Assuntos
Células-Tronco Embrionárias/metabolismo , RNA Polimerase II/metabolismo , Proteínas Repressoras/metabolismo , Animais , Ciclo Celular/genética , Linhagem Celular , Cromatina/metabolismo , Células-Tronco Embrionárias/citologia , Metabolismo Energético/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Camundongos , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb , Ligação Proteica/genética , Transporte Proteico , RNA Polimerase II/genética , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
17.
Development ; 137(15): 2483-92, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20573702

RESUMO

Pluripotent cells develop within the inner cell mass of blastocysts, a mosaic of cells surrounded by an extra-embryonic layer, the trophectoderm. We show that a set of somatic lineage regulators (including Hox, Gata and Sox factors) that carry bivalent chromatin enriched in H3K27me3 and H3K4me2 are selectively targeted by Suv39h1-mediated H3K9me3 and de novo DNA methylation in extra-embryonic versus embryonic (pluripotent) lineages, as assessed both in blastocyst-derived stem cells and in vivo. This stably repressed state is linked with a loss of gene priming for transcription through the exclusion of PRC1 (Ring1B) and RNA polymerase II complexes at bivalent, lineage-inappropriate genes upon trophoblast lineage commitment. Collectively, our results suggest a mutually exclusive role for Ring1B and Suv39h1 in regulating distinct chromatin states at key developmental genes and propose a novel mechanism by which lineage specification can be reinforced during early development.


Assuntos
Cromatina/química , Regulação da Expressão Gênica no Desenvolvimento , Metiltransferases/fisiologia , Proteínas Repressoras/fisiologia , Animais , Blastocisto , Linhagem da Célula , Cromatina/metabolismo , Metilação de DNA , Perfilação da Expressão Gênica , Inativação Gênica , Metiltransferases/metabolismo , Camundongos , Modelos Biológicos , Complexo Repressor Polycomb 1 , Interferência de RNA , RNA Polimerase II/metabolismo , Proteínas Repressoras/metabolismo , Trofoblastos/metabolismo , Ubiquitina-Proteína Ligases
18.
Mol Cell ; 38(5): 675-88, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20542000

RESUMO

Polycomb proteins maintain cell identity by repressing the expression of developmental regulators specific for other cell types. Polycomb repressive complex-2 (PRC2) catalyzes trimethylation of histone H3 lysine-27 (H3K27me3). Although repressed, PRC2 targets are generally associated with the transcriptional initiation marker H3K4me3, but the significance of this remains unclear. Here, we identify a class of short RNAs, approximately 50-200 nucleotides in length, transcribed from the 5' end of polycomb target genes in primary T cells and embryonic stem cells. Short RNA transcription is associated with RNA polymerase II and H3K4me3, occurs in the absence of mRNA transcription, and is independent of polycomb activity. Short RNAs form stem-loop structures resembling PRC2 binding sites in Xist, interact with PRC2 through SUZ12, cause gene repression in cis, and are depleted from polycomb target genes activated during cell differentiation. We propose that short RNAs play a role in the association of PRC2 with its target genes.


Assuntos
RNA/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Camundongos , Dados de Sequência Molecular , Neurônios/citologia , Neurônios/fisiologia , Conformação de Ácido Nucleico , Proteínas do Grupo Polycomb , Regiões Promotoras Genéticas , RNA/química , RNA/genética , Proteínas Repressoras/genética , Linfócitos T/citologia , Linfócitos T/fisiologia
19.
Nat Cell Biol ; 12(6): 618-24, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20473294

RESUMO

Polycomb Repressor Complexes (PRCs) are important regulators of embryogenesis. In embryonic stem (ES) cells many genes that regulate subsequent stages in development are enriched at their promoters for PRC1, PRC2 and Ser 5-phosphorylated RNA Polymerase II (RNAP), and contain domains of 'bivalent' chromatin (enriched for H3K4me3; histone H3 di- or trimethylated at Lys 4 and H3K27me3; histone H3 trimethylated at Lys 27). Loss of individual PRC components in ES cells can lead to gene de-repression and to unscheduled differentiation. Here we show that Jarid2 is a novel subunit of PRC2 that is required for the co-recruitment of PRC1 and RNAP to genes that regulate development in ES cells. Jarid2-deficient ES cells showed reduced H3K4me2/me3 and H3K27me3 marking and PRC1/PRC2 recruitment, and did not efficiently establish Ser 5-phosporylated RNAP at target genes. ES cells lacking Jarid2, in contrast to previously characterized PRC1 and PRC2 mutants, did not inappropriately express PRC2 target genes. Instead, they show a severely compromised capacity for successful differentiation towards neural or mesodermal fates and failed to correctly initiate lineage-specific gene expression in vitro. Collectively, these data indicate that transcriptional priming of bivalent genes in pluripotent ES cells is Jarid2-dependent, and suggests that priming is critical for subsequent multi-lineage differentiation.


Assuntos
Cromatina/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas/metabolismo , RNA Polimerase II/metabolismo , Diferenciação Celular/genética , Histonas/genética , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes/metabolismo , Proteínas/genética , RNA Polimerase II/genética
20.
EMBO Rep ; 10(11): 1213-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19834511

RESUMO

The regulation of gene expression programmes is essential for the generation of diverse cell types during development and for adaptation to environmental signals. RNA polymerase II (RNAPII) transcribes genetic information and coordinates the recruitment of accessory proteins that are responsible for the establishment of active chromatin states and transcript maturation. RNAPII is post-translationally modified at active genes during transcription initiation, elongation and termination, and thereby recruits specific histone and RNA modifiers. RNAPII complexes are also located at silent genes in promoter-proximal paused configurations that provide dynamic transcriptional regulation downstream from initiation. In embryonic stem cells, silent developmental regulator genes that are repressed by Polycomb are associated with a form of RNAPII that can elongate through coding regions but that lacks the post-translational modifications that are important for coupling RNA synthesis to co-transcriptional maturation. Here, we discuss the mechanisms through which the transcription of silent genes might be dissociated from productive expression, and the sophisticated interplay between the transcriptional machinery, Polycomb repression and RNA processing.


Assuntos
Regulação Enzimológica da Expressão Gênica , RNA Polimerase II/química , Animais , Linhagem Celular Tumoral , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células-Tronco Embrionárias/citologia , Éxons , Histonas/química , Humanos , Modelos Biológicos , Modelos Genéticos , Fosforilação , Complexo Repressor Polycomb 1 , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , RNA Polimerase II/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA