Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Am J Physiol Endocrinol Metab ; 326(4): E515-E527, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353639

RESUMO

Exercise robustly increases the glucose demands of skeletal muscle. This demand is met by not only muscle glycogenolysis but also accelerated liver glucose production from hepatic glycogenolysis and gluconeogenesis to fuel mechanical work and prevent hypoglycemia during exercise. Hepatic gluconeogenesis during exercise is dependent on highly coordinated responses within and between muscle and liver. Specifically, exercise increases the rate at which gluconeogenic precursors such as pyruvate/lactate or amino acids are delivered from muscle to the liver, extracted by the liver, and channeled into glucose. Herein, we examined the effects of interrupting hepatic gluconeogenic efficiency and capacity on exercise performance by deleting mitochondrial pyruvate carrier 2 (MPC2) and/or alanine transaminase 2 (ALT2) in the liver of mice. We found that deletion of MPC2 or ALT2 alone did not significantly affect time to exhaustion or postexercise glucose concentrations in treadmill exercise tests, but mice lacking both MPC2 and ALT2 in hepatocytes (double knockout, DKO) reached exhaustion faster and exhibited lower circulating glucose during and after exercise. Use of 2H/1³C metabolic flux analyses demonstrated that DKO mice exhibited lower endogenous glucose production owing to decreased glycogenolysis and gluconeogenesis at rest and during exercise. Decreased gluconeogenesis was accompanied by lower anaplerotic, cataplerotic, and TCA cycle fluxes. Collectively, these findings demonstrate that the transition of the liver to the gluconeogenic mode is critical for preventing hypoglycemia and sustaining performance during exercise. The results also illustrate the need for interorgan cross talk during exercise as described by the Cahill and Cori cycles.NEW & NOTEWORTHY Martino and colleagues examined the effects of inhibiting hepatic gluconeogenesis on exercise performance and systemic metabolism during treadmill exercise in mice. Combined inhibition of gluconeogenesis from lactate/pyruvate and alanine impaired exercise endurance and led to hypoglycemia during and after exercise. In contrast, suppressing either pyruvate-mediated or alanine-mediated gluconeogenesis alone had no effect on these parameters. These findings provide new insight into the molecular nodes that coordinate the metabolic responses of muscle and liver during exercise.


Assuntos
Gluconeogênese , Hipoglicemia , Camundongos , Animais , Gluconeogênese/genética , Ácido Pirúvico/metabolismo , Tolerância ao Exercício , Fígado/metabolismo , Glucose/metabolismo , Hipoglicemia/metabolismo , Lactatos/metabolismo , Alanina/metabolismo , Aminoácidos/metabolismo
2.
bioRxiv ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37662392

RESUMO

Exercise robustly increases the glucose demands of skeletal muscle. This demand is met not only by muscle glycogenolysis, but also by accelerated liver glucose production from hepatic glycogenolysis and gluconeogenesis to fuel mechanical work and prevent hypoglycemia during exercise. Hepatic gluconeogenesis during exercise is dependent on highly coordinated responses within and between muscle and liver. Specifically, exercise increases the rate at which gluconeogenic precursors such as pyruvate/lactate or amino acids are delivered from muscle to the liver, extracted by the liver, and channeled into glucose. Herein, we examined the effects of interrupting gluconeogenic efficiency and capacity on exercise performance by deleting hepatic mitochondrial pyruvate carrier 2 (MPC2) and/or alanine transaminase 2 (ALT2) in mice. We found that deletion of MPC2 or ALT2 alone did not significantly affect time to exhaustion or post-exercise glucose concentrations in treadmill exercise tests, but mice lacking both MPC2 and ALT2 in liver (DKO) reached exhaustion faster and exhibited lower circulating glucose during and after exercise. Use of ²H/¹³C metabolic flux analyses demonstrated that DKO mice exhibited lower endogenous glucose production owing to decreased glycogenolysis and gluconeogenesis at rest and during exercise. The decreased gluconeogenesis was accompanied by lower anaplerotic, cataplerotic, and TCA cycle fluxes. Collectively, these findings demonstrate that the transition of the liver to the gluconeogenic mode is critical for preventing hypoglycemia and sustaining performance during exercise. The results also illustrate the need for interorgan crosstalk during exercise as described by the Cahill and Cori cycles.

3.
Cell Rep ; 42(4): 112336, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37002920

RESUMO

The mitochondrial response to changes in cellular energy demand is necessary for cellular adaptation and organ function. Many genes are essential in orchestrating this response, including the transforming growth factor (TGF)-ß1 target gene Mss51, an inhibitor of skeletal muscle mitochondrial respiration. Although Mss51 is implicated in the pathophysiology of obesity and musculoskeletal disease, how Mss51 is regulated is not entirely understood. Site-1 protease (S1P) is a key activator of several transcription factors required for cellular adaptation. However, the role of S1P in muscle is unknown. Here, we identify S1P as a negative regulator of muscle mass and mitochondrial respiration. S1P disruption in mouse skeletal muscle reduces Mss51 expression and increases muscle mass and mitochondrial respiration. The effects of S1P deficiency on mitochondrial activity are counteracted by overexpressing Mss51, suggesting that one way S1P inhibits respiration is by regulating Mss51. These discoveries expand our understanding of TGF-ß signaling and S1P function.


Assuntos
Respiração Celular , Mitocôndrias , Fator de Crescimento Transformador beta , Animais , Camundongos , Respiração Celular/genética , Respiração Celular/fisiologia , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
4.
J Biol Chem ; 297(5): 101316, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34678314

RESUMO

Progesterone receptor membrane component 1 (PGRMC1) is a heme-binding protein implicated in a wide range of cellular functions. We previously showed that PGRMC1 binds to cytochromes P450 in yeast and mammalian cells and supports their activity. Recently, the paralog PGRMC2 was shown to function as a heme chaperone. The extent of PGRMC1 function in cytochrome P450 biology and whether PGRMC1 is also a heme chaperone are unknown. Here, we examined the function of Pgrmc1 in mouse liver using a knockout model and found that Pgrmc1 binds and stabilizes a broad range of cytochromes P450 in a heme-independent manner. Proteomic and transcriptomic studies demonstrated that Pgrmc1 binds more than 13 cytochromes P450 and supports maintenance of cytochrome P450 protein levels posttranscriptionally. In vitro assays confirmed that Pgrmc1 KO livers exhibit reduced cytochrome P450 activity consistent with reduced enzyme levels. Mechanistic studies in cultured cells demonstrated that PGRMC1 stabilizes cytochromes P450 and that binding and stabilization do not require PGRMC1 binding to heme. Importantly, Pgrmc1-dependent stabilization of cytochromes P450 is physiologically relevant, as Pgrmc1 deletion protected mice from acetaminophen-induced liver injury. Finally, evaluation of Y113F mutant Pgrmc1, which lacks the axial heme iron-coordinating hydroxyl group, revealed that proper iron coordination is not required for heme binding, but is required for binding to ferrochelatase, the final enzyme in heme biosynthesis. PGRMC1 was recently identified as the causative mutation in X-linked isolated pediatric cataract formation. Together, these results demonstrate a heme-independent function for PGRMC1 in cytochrome P450 stability that may underlie clinical phenotypes.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Heme/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Progesterona/metabolismo , Substituição de Aminoácidos , Animais , Sistema Enzimático do Citocromo P-450/genética , Estabilidade Enzimática , Células HeLa , Heme/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Receptores de Progesterona/genética
5.
JCI Insight ; 6(9)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33986192

RESUMO

Lipin 1 is a bifunctional protein that is a transcriptional regulator and has phosphatidic acid (PA) phosphohydrolase activity, which dephosphorylates PA to generate diacylglycerol. Human lipin 1 mutations lead to episodic rhabdomyolysis, and some affected patients exhibit cardiac abnormalities, including exercise-induced cardiac dysfunction and cardiac triglyceride accumulation. Furthermore, lipin 1 expression is deactivated in failing heart, but the effects of lipin 1 deactivation in myocardium are incompletely understood. We generated mice with cardiac-specific lipin 1 KO (cs-Lpin1-/-) to examine the intrinsic effects of lipin 1 in the myocardium. Cs-Lpin1-/- mice had normal systolic cardiac function but mild cardiac hypertrophy. Compared with littermate control mice, PA content was higher in cs-Lpin1-/- hearts, which also had an unexpected increase in diacylglycerol and triglyceride content. Cs-Lpin1-/- mice exhibited diminished cardiac cardiolipin content and impaired mitochondrial respiration rates when provided with pyruvate or succinate as metabolic substrates. After transverse aortic constriction-induced pressure overload, loss of lipin 1 did not exacerbate cardiac hypertrophy or dysfunction. However, loss of lipin 1 dampened the cardiac ionotropic response to dobutamine and exercise endurance in association with reduced protein kinase A signaling. These data suggest that loss of lipin 1 impairs cardiac functional reserve, likely due to effects on glycerolipid homeostasis, mitochondrial function, and protein kinase A signaling.


Assuntos
Cardiomegalia/genética , Modelos Animais de Doenças , Tolerância ao Exercício/genética , Camundongos , Mitocôndrias Cardíacas/metabolismo , Contração Miocárdica/genética , Miocárdio/metabolismo , Fosfatidato Fosfatase/genética , Animais , Cardiolipinas/metabolismo , Cardiomegalia/metabolismo , Cardiotônicos/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diglicerídeos/metabolismo , Dobutamina/farmacologia , Tolerância ao Exercício/efeitos dos fármacos , Camundongos Knockout , Contração Miocárdica/efeitos dos fármacos , Ácidos Fosfatídicos/metabolismo , Ácido Pirúvico/metabolismo , Ácido Succínico/metabolismo , Triglicerídeos/metabolismo
6.
Endocrinology ; 162(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33543238

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme that regulates cellular energy metabolism in many cell types. The major purpose of the present study was to test the hypothesis that NAD+ in white adipose tissue (WAT) is a regulator of whole-body metabolic flexibility in response to changes in insulin sensitivity and with respect to substrate availability and use during feeding and fasting conditions. To this end, we first evaluated the relationship between WAT NAD+ concentration and metabolic flexibility in mice and humans. We found that WAT NAD+ concentration was increased in mice after calorie restriction and exercise, 2 enhancers of metabolic flexibility. Bariatric surgery-induced 20% weight loss increased plasma adiponectin concentration, skeletal muscle insulin sensitivity, and WAT NAD+ concentration in people with obesity. We next analyzed adipocyte-specific nicotinamide phosphoribosyltransferase (Nampt) knockout (ANKO) mice, which have markedly decreased NAD+ concentrations in WAT. ANKO mice oxidized more glucose during the light period and after fasting than control mice. In contrast, the normal postprandial stimulation of glucose oxidation and suppression of fat oxidation were impaired in ANKO mice. Data obtained from RNA-sequencing of WAT suggest that loss of NAMPT increases inflammation, and impairs insulin sensitivity, glucose oxidation, lipolysis, branched-chain amino acid catabolism, and mitochondrial function in WAT, which are features of metabolic inflexibility. These results demonstrate a novel function of WAT NAMPT-mediated NAD+ biosynthesis in regulating whole-body metabolic flexibility, and provide new insights into the role of adipose tissue NAD+ biology in metabolic health.


Assuntos
Tecido Adiposo/metabolismo , Citocinas/metabolismo , Metabolismo Energético/fisiologia , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Adulto , Animais , Citocinas/genética , Ácidos Graxos/metabolismo , Feminino , Humanos , Lipólise/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Nicotinamida Fosforribosiltransferase/genética , Período Pós-Prandial
7.
Mol Genet Genomic Med ; 7(7): e00733, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31070020

RESUMO

BACKGROUND: Site-1 Protease (S1P) is a Golgi-resident protein required for the activation of regulatory proteins that drive key cellular functions, including, the unfolded protein response (UPR) and lipid and cholesterol biosynthesis. While disruptions in S1P function have been widely characterized in animal models, to date, the implications of disrupted S1P function in human disease states are not completely known. METHODS: The patient and both parents underwent whole exome and mitochondrial DNA sequencing, and Sanger sequencing was used to confirm the mutation. Western blotting and immunofluorescence studies were performed on either proband-derived fibroblasts or on an established cell line to assess protein expression and cellular localization of the mutated S1P protein. Quantitative real-time PCR and luciferase reporter assays were used to examine activation of S1P target pathways in the context of the S1P mutation. RESULTS: We describe a female patient with a de novo heterozygous missense mutation in the transmembrane domain of S1P (p. Pro1003Ser). The patient presented to our neuromuscular clinic with episodic, activity-induced, focal myoedema and myalgias with hyperCKemia. Her clinical phenotype was complex and included gastrointestinal hypomotility, ocular migraines, and polycystic ovary syndrome. Molecular analysis using proband-derived fibroblasts and cell lines harboring the Pro1003Ser mutation demonstrated increased activation of UPR and lipid and cholesterol regulatory pathways and localization of S1P Pro1003Ser in the Golgi. CONCLUSION: These findings suggest a critical function for S1P in several human organ systems and implicate an important role for S1P in various human disease states.


Assuntos
Creatina Quinase/sangue , Mutação de Sentido Incorreto , Mialgia/genética , Fenótipo , Pró-Proteína Convertases/genética , Serina Endopeptidases/genética , Células Cultivadas , Colesterol/metabolismo , Edema/genética , Edema/patologia , Feminino , Fibroblastos/metabolismo , Complexo de Golgi/metabolismo , Humanos , Mialgia/patologia , Pró-Proteína Convertases/metabolismo , Serina Endopeptidases/metabolismo , Síndrome , Adulto Jovem
8.
Am J Obstet Gynecol ; 220(5): 476.e1-476.e11, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30707966

RESUMO

BACKGROUND: Bacterial vaginosis is 1 of the most common vaginal conditions in the United States. Recent studies have suggested that obese women have an abnormal microbiota reminiscent of bacterial vaginosis; however, few studies have investigated the prevalence of bacterial vaginosis in overweight and obese populations. Moreover, despite the increased prevalence of obesity and bacterial vaginosis in black women, it is not known whether racial disparities exist in the relationship between obesity and bacterial vaginosis. OBJECTIVE: The objective of this study was to examine the relationship between body mass index and bacterial vaginosis as determined by Nugent score and to determine the influence of race in this context. STUDY DESIGN: We performed a cross-sectional study using patient data and vaginal smears from 5918 participants of the Contraceptive CHOICE Project. Gram-stained vaginal smears were scored with the Nugent method and categorized as bacterial vaginosis-negative (Nugent score, 0-3), bacterial vaginosis-intermediate (Nugent score, 4-6), or bacterial vaginosis-positive (Nugent score, 7-10). Body mass index was determined with Centers for Disease Control and Prevention guidelines, and obese individuals were categorized as class I, II, or III obese based on National Institutes of Health and World Health Organization body mass index parameters. Linear regression was used to model mean differences in Nugent scores; Poisson regression with robust error variance was used to model prevalence of bacterial vaginosis. RESULTS: In our cohort, 50.7% of participants were black; 41.5% were white, and 5.1% were of Hispanic ethnicity; the average age of 25.3 years old. Overall, 28.1% of participants were bacterial vaginosis-positive. Bacterial vaginosis was prevalent in 21.3% of lean, 30.4% of overweight, and 34.5% of obese women (P<.001). The distribution of bacterial vaginosis-intermediate individuals was similar across all body mass index categories. Compared with the scores of lean women, Nugent scores were highest among overweight and obese class I women (adjusted mean difference: overweight women, 0.33 [95% confidence interval, 0.14-0.51] and obese women, 0.51 [95% confidence interval, 0.29-0.72]). Consistent with this, overweight and obese women had a higher frequency of bacterial vaginosis compared with lean women, even after adjustment for variables that included race. Among white women, the prevalence of bacterial vaginosis was higher for overweight and class I and class II/III obese white women compared with lean white women, which is a phenomenon not observed among black women and suggests an effect modification. CONCLUSION: Overweight and obese women have higher Nugent scores and a greater occurrence of bacterial vaginosis compared with lean women. Black women have a greater prevalence of bacterial vaginosis independent of their body mass index compared with white women.


Assuntos
Obesidade/epidemiologia , Vaginose Bacteriana/epidemiologia , Adulto , População Negra/estatística & dados numéricos , Estudos Transversais , Feminino , Humanos , Fatores de Risco , Esfregaço Vaginal , Vaginose Bacteriana/classificação , População Branca/estatística & dados numéricos , Adulto Jovem
9.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1255-1263, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28344128

RESUMO

As the obesity epidemic worsens, the prevalence of maternal obesity is expected to rise. Both high-fat and high-sucrose diets are known to promote maternal obesity and several studies have elucidated the molecular influence of high-fat feeding on female reproduction. However, to date, the molecular impact of a high-sucrose diet on maternal obesity remains to be investigated. Using our previously reported Drosophila high-sucrose maternal obesity model, we sought to determine how excess dietary sucrose impacted the ovary. High-sucrose diet (HSD) fed adult females developed systemic insulin resistance and exhibited an ovarian phenotype characterized by excess accumulation of lipids and cholesterol in the ovary, decreased ovary size, and impaired egg maturation. We also observed decreased expression of antioxidant genes and increased protein carbonylation in the ovaries of HSD females. HSD females laid fewer eggs; however, the overall survival of offspring was unchanged relative to lean control females. Ovaries of HSD females had increased mitochondrial DNA copy number and decreased expression of key mitochondrial regulators, suggestive of an ineffective compensatory response to mitochondrial dysfunction. Mitochondrial alterations were also observed in male offspring of obese females. This study demonstrates that high-sucrose-induced maternal obesity promotes insulin resistance, while disrupting ovarian metabolism and function.


Assuntos
Carboidratos da Dieta/efeitos adversos , Obesidade/metabolismo , Ovário/metabolismo , Sacarose/efeitos adversos , Animais , Carboidratos da Dieta/farmacologia , Drosophila melanogaster , Feminino , Fertilidade/efeitos dos fármacos , Obesidade/induzido quimicamente , Obesidade/patologia , Ovário/patologia , Sacarose/farmacologia
10.
Reproduction ; 152(3): R79-90, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27450801

RESUMO

The influence of nutrition on offspring metabolism has become a hot topic in recent years owing to the growing prevalence of maternal and childhood obesity. Studies in mammals have identified several factors correlating with parental and early offspring dietary influences on progeny health; however, the molecular mechanisms that underlie these factors remain undiscovered. Mammalian metabolic tissues and pathways are heavily conserved in Drosophila melanogaster, making the fly an invaluable genetic model organism for studying metabolism. In this review, we discuss the metabolic similarities between mammals and Drosophila and present evidence supporting its use as an emerging model of metabolic programming.


Assuntos
Reprogramação Celular , Dieta , Drosophila melanogaster/metabolismo , Redes e Vias Metabólicas , Animais , Humanos
11.
Mol Cell Endocrinol ; 435: 20-28, 2016 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-26687062

RESUMO

The prevalence of obesity in the world is endemic with one rapidly growing health concern being maternal obesity. Obesity during pregnancy increases the risk of gestational diabetes, miscarriage, and preeclampsia, while rendering offspring susceptible to developmental anomalies and long-term metabolic complications including type 2 diabetes and cardiovascular disease. Several studies in humans and rodents demonstrate a correlation between the risks of maternal overnutrition and factors such as epigenetics, mitochondrial dysfunction, insulin resistance, ER stress, and immune system disruption. At present, the molecular mechanisms connecting these factors to maternal obesity are unknown. This review focuses on the use of Drosophila melanogaster to study human metabolic diseases, including obesity, and its emerging use to elucidate the mechanisms of maternal overnutrition and the impact on offspring.


Assuntos
Modelos Animais de Doenças , Drosophila melanogaster/embriologia , Desenvolvimento Fetal , Resistência à Insulina , Doenças Metabólicas/epidemiologia , Obesidade/complicações , Complicações na Gravidez/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Animais , Feminino , Humanos , Gravidez , Prevalência
12.
J Biol Chem ; 289(5): 2725-35, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24327658

RESUMO

Sterol homeostasis is tightly controlled by the sterol regulatory element-binding protein (SREBP) transcription factor that is highly conserved from fungi to mammals. In fission yeast, SREBP functions in an oxygen-sensing pathway to promote adaptation to decreased oxygen supply that limits oxygen-dependent sterol synthesis. Low oxygen stimulates proteolytic cleavage of the SREBP homolog Sre1, generating the active transcription factor Sre1N that drives expression of sterol biosynthetic enzymes. In addition, low oxygen increases the stability and DNA binding activity of Sre1N. To identify additional signals controlling Sre1 activity, we conducted a genetic overexpression screen. Here, we describe our isolation and characterization of the casein kinase 1 family member Hhp2 as a novel regulator of Sre1N. Deletion of Hhp2 increases Sre1N protein stability and ergosterol levels in the presence of oxygen. Hhp2-dependent Sre1N degradation by the proteasome requires Hhp2 kinase activity, and Hhp2 binds and phosphorylates Sre1N at specific residues. Our results describe a role for casein kinase 1 as a direct regulator of sterol homeostasis. Given the role of mammalian Hhp2 homologs, casein kinase 1δ and 1ε, in regulation of the circadian clock, these findings may provide a mechanism for coordinating circadian rhythm and lipid metabolism.


Assuntos
Caseína Quinase I/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Esteróis/metabolismo , Caseína Quinase I/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Homeostase/fisiologia , Metabolismo dos Lipídeos/fisiologia , Oxigênio/metabolismo , Fosforilação/fisiologia , Proteínas Quinases/genética , Proteínas Quinases/isolamento & purificação , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/isolamento & purificação , Proteínas de Ligação a Elemento Regulador de Esterol/genética
13.
Cell Metab ; 14(1): 33-44, 2011 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-21723502

RESUMO

Lipotoxicity is a metabolic stress response implicated in the pathogenesis of diabetes complications and has been shown to involve lipid-induced oxidative stress. To elucidate the molecular mechanisms of lipotoxicity, we used retroviral promoter trap mutagenesis to isolate a cell line that is resistant to lipotoxic and oxidative stress. We show that loss of three box C/D small nucleolar RNAs (snoRNAs) encoded in the ribosomal protein L13a (rpL13a) locus is sufficient to confer resistance to lipotoxic and oxidative stress in vitro and prevents the propagation of oxidative stress in vivo. Our results provide evidence for a previously unappreciated, non-canonical role for box C/D snoRNAs as regulators of metabolic stress response pathways in mammalian cells.


Assuntos
RNA Nucleolar Pequeno/metabolismo , Estresse Fisiológico , Animais , Apoptose , Sequência de Bases , Células CHO , Cricetinae , Cricetulus , Técnicas de Silenciamento de Genes , Camundongos , Dados de Sequência Molecular , Estresse Oxidativo , Palmitatos/toxicidade , Proteínas Ribossômicas/antagonistas & inibidores , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
14.
Cell Metab ; 10(1): 9-12, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19583949

RESUMO

Excess fatty acid accumulation in nonadipose tissues is a hallmark of metabolic disease. When elevated lipid levels exceed the cell's capacity to store or utilize fatty acids, a lipotoxic-response is elicited, characterized by destruction of organelle membranes, activation of stress pathways, and apoptosis. This Minireview focuses on the mechanisms by which lipid overload causes nonadipose cell death and contributes to the pathogenesis of obesity and diabetes.


Assuntos
Ácidos Graxos/toxicidade , Apoptose , Membrana Celular/fisiologia , Retículo Endoplasmático/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Estresse Oxidativo , Transdução de Sinais
15.
J Biol Chem ; 284(12): 7446-54, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19150982

RESUMO

In obesity and diabetes, an imbalance in fatty acid uptake and fatty acid utilization leads to excess accumulation of lipid in non-adipose tissues. This lipid overload is associated with cellular dysfunction and cell death, which contribute to organ failure, a phenomenon termed lipotoxicity. To elucidate the molecular mechanism of lipid-mediated cell death, we generated and characterized a mutant Chinese hamster ovary cell line that is resistant to palmitate-induced cell death. In this mutant, random insertion of a retroviral promoter trap has disrupted the gene for the non-coding RNA, growth arrested DNA-damage inducible gene 7 (gadd7). Here we report that gadd7 is induced by lipotoxic stress in a reactive oxygen species (ROS)-dependent fashion and is necessary for both lipid- and general oxidative stress-mediated cell death. Depletion of gadd7 by mutagenesis or short hairpin RNA knockdown significantly reduces lipid and non-lipid induced ROS. Furthermore, depletion of gadd7 delays and diminishes ROS-induced endoplasmic reticulum stress. Together these data are the first to implicate a non-coding RNA in a feed-forward loop with oxidative stress and its induction of the endoplasmic reticulum stress response.


Assuntos
Retículo Endoplasmático/metabolismo , Ácidos Graxos/metabolismo , Estresse Oxidativo , RNA não Traduzido/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Ácidos Graxos/genética , Mutagênese , Mutação , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , RNA não Traduzido/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA