Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37662251

RESUMO

Glioblastoma (GBM) is the most prevalent and aggressive malignant primary brain tumor. GBM proximal to the lateral ventricles (LVs) is more aggressive, potentially due to subventricular zone (SVZ) contact. Despite this, crosstalk between GBM and neural stem/progenitor cells (NSC/NPCs) is not well understood. Using cell-specific proteomics, we show that LV-proximal GBM prevents neuronal maturation of NSCs through induction of senescence. Additionally, GBM brain tumor initiating cells (BTICs) increase expression of CTSB upon interaction with NPCs. Lentiviral knockdown and recombinant protein experiments reveal both cell-intrinsic and soluble CTSB promote malignancy-associated phenotypes in BTICs. Soluble CTSB stalls neuronal maturation in NPCs while promoting senescence, providing a link between LV-tumor proximity and neurogenesis disruption. Finally, we show LV-proximal CTSB upregulation in patients, showing the relevance of this crosstalk in human GBM biology. These results demonstrate the value of proteomic analysis in tumor microenvironment research and provide direction for new therapeutic strategies in GBM. Highlights: Periventricular GBM is more malignant and disrupts neurogenesis in a rodent model.Cell-specific proteomics elucidates tumor-promoting crosstalk between GBM and NPCs.NPCs induce upregulated CTSB expression in GBM, promoting tumor progression.GBM stalls neurogenesis and promotes NPC senescence via CTSB.

2.
NPJ Parkinsons Dis ; 7(1): 30, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741985

RESUMO

Parkinson's disease (PD) and related synucleinopathies are characterized by chronic neuroinflammation leading to the premise that anti-inflammatory therapies could ameliorate synucleinopathy and associated sequelae. To test this idea, we used recombinant adeno-associated viruses (AAV) to express the anti-inflammatory cytokine, Interleukin (Il)-10, in Line M83 transgenic mice that expresses the PD-associated A53T mutant human α-synuclein (αSyn). Contrary to our expectations, we observed that intraspinal Il-10 expression initiated at birth upregulated microgliosis and led to early death in homozygous M83+/+ mice. We further observed that Il-10 preconditioning led to reduced lifespan in the hemizygous M83+/- mice injected with preformed αSyn aggregates in hindlimb muscles. To determine the mechanistic basis for these adverse effects, we took advantage of the I87A variant Il-10 (vIl-10) that has predominantly immunosuppressive properties. Sustained intraspinal expression of vIl-10 in preformed αSyn-aggregate seeded M83+/- mice resulted in earlier death, accelerated αSyn pathology, pronounced microgliosis, and increased apoptosis compared to control mice. AAV-vIl-10 expression robustly induced p62 and neuronal LC3B accumulation in these mice, indicating that Il-10 signaling mediated preconditioning of the neuraxis can potentially exacerbate αSyn accumulation through autophagy dysfunction in the neurons. Together, our data demonstrate unexpected adverse effects of both Il-10 and its immunosuppressive variant, vIl-10, in a mouse model of PD, highlighting the pleiotropic functions of immune mediators and their complex role in non-cell autonomous signaling in neurodegenerative proteinopathies.

3.
Mol Neurodegener ; 12(1): 40, 2017 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-28552073

RESUMO

BACKGROUND: Prionoid transmission of α-synuclein (αSyn) aggregates along neuroanatomically connected projections is posited to underlie disease progression in α-synucleinopathies. Here, we specifically wanted to study whether this prionoid progression occurs via direct inter-neuronal transfer and, if so, would intrastriatal injection of αSyn aggregates lead to nigral degeneration. METHODS: To test prionoid transmission of αSyn aggregates along the nigro-striatal pathway, we injected amyloidogenic αSyn aggregates into two different regions of the striatum of adult human wild type αSyn transgenic mice (Line M20) or non-transgenic (NTG) mice and aged for 4 months. RESULTS: M20 mice injected in internal capsule (IC) or caudate putamen (CPu) regions of the striatum showed florid αSyn inclusion pathology distributed throughout the neuraxis, irrespective of anatomic connectivity. These αSyn inclusions were found in different cell types including neurons, astrocytes and even ependymal cells. On the other hand, intra-striatal injection of αSyn fibrils into NTG mice resulted in sparse αSyn pathology, mostly localized in the striatum and entorhinal cortex. Interestingly, NTG mice injected with preformed human αSyn fibrils showed no induction of αSyn inclusion pathology, suggesting the presence of a species barrier for αSyn fibrillar seeds. Modest levels of nigral dopaminergic (DA) neuronal loss was observed exclusively in substantia nigra (SN) of M20 cohorts injected in the IC, even in the absence of frank αSyn inclusions in DA neurons. None of the NTG mice or CPu-injected M20 mice showed DA neurodegeneration. Interestingly, the pattern and distribution of induced αSyn pathology corresponded with neuroinflammation especially in the SN of M20 cohorts. Hypermorphic reactive astrocytes laden with αSyn inclusions were abundantly present in the brains of M20 mice. CONCLUSIONS: Overall, our findings show that the pattern and extent of dissemination of αSyn pathology does not necessarily follow expected neuroanatomic connectivity. Further, the presence of intra-astrocytic αSyn pathology implies that glial cells participate in αSyn transmission and possibly have a role in non-cell autonomous disease modification.


Assuntos
Encéfalo/patologia , Doenças Neurodegenerativas/patologia , alfa-Sinucleína/toxicidade , Animais , Humanos , Camundongos , Camundongos Transgênicos
4.
Mol Neurodegener ; 12(1): 1, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28049533

RESUMO

BACKGROUND: Cell-to-cell transmission of α-synuclein (αSyn) is hypothesized to play an important role in disease progression in synucleinopathies. This process involves cellular uptake of extracellular amyloidogenic αSyn seeds followed by seeding of endogenous αSyn. Though it is well known that αSyn is an immunogenic protein that can interact with immune receptors, the role of innate immunity in regulating induction of αSyn pathology in vivo is unknown. Herein, we explored whether altering innate immune activation affects induction of αSyn pathology in wild type mice. METHODS: We have previously demonstrated that recombinant adeno-associated virus (AAV) mediated expression of the inflammatory cytokine, Interleukin (IL)-6, in neonatal wild type mice brains leads to widespread immune activation in the brain without overt neurodegeneration. To investigate how IL-6 expression affects induction of αSyn pathology, we injected mouse wild type αSyn fibrils in the hippocampus of AAV-IL-6 expressing mice. Control mice received AAV containing an Empty vector (EV) construct. Two separate cohorts of AAV-IL-6 and AAV-EV mice were analyzed in this study: 4 months or 2 months following intrahippocampal αSyn seeding. RESULTS: Here, we show that IL-6 expression resulted in widespread gliosis and concurrently reduced αSyn inclusion pathology induced by a single intra-hippocampal injection of exogenous amyloidogenic αSyn. The reduction in αSyn inclusion pathology in IL-6 expressing mice was time-dependent. Suppression of αSyn pathology was accompanied by reductions in both argyrophilic and p62 immunoreactive inclusions. CONCLUSIONS: Our data supports a beneficial role of inflammatory priming of the CNS in wild type mice challenged with exogenous αSyn. A likely mechanism is efficient astroglial scavenging of exogenous αSyn, at least early in the disease process, and in the absence of human αSyn transgene overexpression. Given evidence that a pro-inflammatory environment may restrict seeding of αSyn pathology, this can be used to design anti-αSyn immunobiotherapies by harnessing innate immune function.


Assuntos
Hipocampo/patologia , Interleucina-6/imunologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , alfa-Sinucleína/toxicidade , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Gliose/patologia , Imuno-Histoquímica , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Transgênicos , alfa-Sinucleína/imunologia
5.
J Virol ; 91(2)2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27852849

RESUMO

Misfolded α-synuclein (αS) is hypothesized to spread throughout the central nervous system (CNS) by neuronal connectivity leading to widespread pathology. Increasing evidence indicates that it also has the potential to invade the CNS via peripheral nerves in a prion-like manner. On the basis of the effectiveness following peripheral routes of prion administration, we extend our previous studies of CNS neuroinvasion in M83 αS transgenic mice following hind limb muscle (intramuscular [i.m.]) injection of αS fibrils by comparing various peripheral sites of inoculations with different αS protein preparations. Following intravenous injection in the tail veins of homozygous M83 transgenic (M83+/+) mice, robust αS pathology was observed in the CNS without the development of motor impairments within the time frame examined. Intraperitoneal (i.p.) injections of αS fibrils in hemizygous M83 transgenic (M83+/-) mice resulted in CNS αS pathology associated with paralysis. Interestingly, injection with soluble, nonaggregated αS resulted in paralysis and pathology in only a subset of mice, whereas soluble Δ71-82 αS, human ßS, and keyhole limpet hemocyanin (KLH) control proteins induced no symptoms or pathology. Intraperitoneal injection of αS fibrils also induced CNS αS pathology in another αS transgenic mouse line (M20), albeit less robustly in these mice. In comparison, i.m. injection of αS fibrils was more efficient in inducing CNS αS pathology in M83 mice than i.p. or tail vein injections. Furthermore, i.m. injection of soluble, nonaggregated αS in M83+/- mice also induced paralysis and CNS αS pathology, although less efficiently. These results further demonstrate the prion-like characteristics of αS and reveal its efficiency to invade the CNS via multiple routes of peripheral administration. IMPORTANCE: The misfolding and accumulation of α-synuclein (αS) inclusions are found in a number of neurodegenerative disorders and is a hallmark feature of Parkinson's disease (PD) and PD-related diseases. Similar characteristics have been observed between the infectious prion protein and αS, including its ability to spread from the peripheral nervous system and along neuroanatomical tracts within the central nervous system. In this study, we extend our previous results and investigate the efficiency of intravenous (i.v.), intraperitoneal (i.p.), and intramuscular (i.m.) routes of injection of αS fibrils and other protein controls. Our data reveal that injection of αS fibrils via these peripheral routes in αS-overexpressing mice are capable of inducing a robust αS pathology and in some cases cause paralysis. Furthermore, soluble, nonaggregated αS also induced αS pathology, albeit with much less efficiency. These findings further support and extend the idea of αS neuroinvasion from peripheral exposures.


Assuntos
Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/patologia , alfa-Sinucleína/administração & dosagem , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Doenças do Sistema Nervoso Central/mortalidade , Doenças do Sistema Nervoso Central/fisiopatologia , Modelos Animais de Doenças , Corpos de Inclusão/metabolismo , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Fenótipo , Agregados Proteicos , Agregação Patológica de Proteínas , Medula Espinal/metabolismo , Medula Espinal/patologia , alfa-Sinucleína/metabolismo
6.
J Neurochem ; 140(4): 662-678, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27424880

RESUMO

Progression of α-synuclein inclusion pathology may occur through cycles of release and uptake of α-synuclein aggregates, which induce additional intracellular α-synuclein inclusion pathology. This process may explain (i) the presence of α-synuclein inclusion pathology in grafted cells in human brains, and (ii) the slowly progressive nature of most human α-synucleinopathies. It also provides a rationale for therapeutic targeting of extracellular aggregates to limit pathology spread. We investigated the cellular mechanisms underlying intraneuronal α-synuclein aggregation following exposure to exogenous preformed α-synuclein amyloid fibrils. Exogenous α-synuclein fibrils efficiently attached to cell membranes and were subsequently internalized and degraded within the endosomal/lysosomal system. However, internalized α-synuclein amyloid fibrils can apparently overwhelm the endosomal/lysosomal machinery leading to the induction of intraneuronal α-synuclein inclusions comprised of endogenous α-synuclein. Furthermore, the efficiency of inclusion formation was relatively low in these studies compared to studies using primary neuronal-glial cultures over-expressing α-synuclein. Our study indicates that under physiologic conditions, endosomal/lysosomal function acts as an endogenous barrier to the induction of α-synuclein inclusion pathology, but when compromised, it may lower the threshold for pathology induction/transmission. Cover Image for this issue: doi: 10.1111/jnc.13787.


Assuntos
Amiloide/metabolismo , Corpos de Inclusão/metabolismo , Lisossomos/metabolismo , Proteólise , Transdução de Sinais/fisiologia , alfa-Sinucleína/metabolismo , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Humanos , Corpos de Inclusão/patologia , Lisossomos/patologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout
7.
J Biol Chem ; 291(22): 11647-56, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27008863

RESUMO

The biological underpinnings and the pathological lesions of psychiatric disorders are centuries-old questions that have yet to be understood. Recent studies suggest that schizophrenia and related disorders likely have their origins in perturbed neurodevelopment and can result from a large number of common genetic variants or multiple, individually rare genetic alterations. It is thus conceivable that key neurodevelopmental pathways underline the various genetic changes and the still unknown pathological lesions in schizophrenia. Here, we report that mice defective of the nicastrin subunit of γ-secretase in oligodendrocytes have hypomyelination in the central nervous system. These mice have altered dopamine signaling and display profound abnormal phenotypes reminiscent of schizophrenia. In addition, we identify an association of the nicastrin gene with a human schizophrenia cohort. These observations implicate γ-secretase and its mediated neurodevelopmental pathways in schizophrenia and provide support for the "myelination hypothesis" of the disease. Moreover, by showing that schizophrenia and obsessive-compulsive symptoms could be modeled in animals wherein a single genetic factor is altered, our work provides a biological basis that schizophrenia with obsessive-compulsive disorder is a distinct subtype of schizophrenia.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Comportamento Compulsivo , Glicoproteínas de Membrana/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Esquizofrenia/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Animais , Feminino , Humanos , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Esquizofrenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA