Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 26(2): 203-218, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36560926

RESUMO

Human impacts such as habitat loss, climate change and biological invasions are radically altering biodiversity, with greater effects projected into the future. Evidence suggests human impacts may differ substantially between terrestrial and freshwater ecosystems, but the reasons for these differences are poorly understood. We propose an integrative approach to explain these differences by linking impacts to four fundamental processes that structure communities: dispersal, speciation, species-level selection and ecological drift. Our goal is to provide process-based insights into why human impacts, and responses to impacts, may differ across ecosystem types using a mechanistic, eco-evolutionary comparative framework. To enable these insights, we review and synthesise (i) how the four processes influence diversity and dynamics in terrestrial versus freshwater communities, specifically whether the relative importance of each process differs among ecosystems, and (ii) the pathways by which human impacts can produce divergent responses across ecosystems, due to differences in the strength of processes among ecosystems we identify. Finally, we highlight research gaps and next steps, and discuss how this approach can provide new insights for conservation. By focusing on the processes that shape diversity in communities, we aim to mechanistically link human impacts to ongoing and future changes in ecosystems.


Assuntos
Efeitos Antropogênicos , Ecossistema , Humanos , Biodiversidade , Água Doce , Evolução Biológica , Mudança Climática
2.
Swiss J Palaeontol ; 141(1): 19, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439694

RESUMO

The Smithian-Spathian boundary (SSB) crisis played a prominent role in resetting the evolution and diversity of the nekton (ammonoids and conodonts) during the Early Triassic recovery. The late Smithian nektonic crisis culminated at the SSB, ca. 2.7 Myr after the Permian-Triassic boundary mass extinction. An accurate and high-resolution biochronological frame is needed for establishing patterns of extinction and re-diversification of this crisis. Here, we propose a new biochronological frame for conodonts that is based on the Unitary Associations Method (UAM). In this new time frame, the SSB can thus be placed between the climax of the extinction and the onset of the re-diversification. Based on the study of new and rich conodont collections obtained from five sections (of which four are newly described here) in the Nanpanjiang Basin, South China, we have performed a thorough taxonomical revision and described one new genus and 21 new species. Additionally, we have critically reassessed the published conodont data from 16 other sections from South China, and we have used this new, standardized dataset to construct the most accurate, highly resolved, and laterally reproducible biozonation of the Smithian to early Spathian interval for South China. The resulting 11 Unitary Association Zones (UAZ) are intercalibrated with lithological and chemostratigraphical (δ13Ccarb) markers, as well as with ammonoid zones, thus providing a firm basis for an evolutionary meaningful and laterally consistent definition of the SSB. Our UAZ8, which is characterized by the occurrence of Icriospathodus ex gr. crassatus, Triassospathodus symmetricus and Novispathodus brevissimus, is marked by a new evolutionary radiation of both conodonts and ammonoids and is within a positive peak in the carbon isotope record. Consequently, we propose to place the SSB within the separation interval intercalated between UAZ7 and UAZ8 thus leaving some flexibility for future refinement and updating. Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-022-00259-x.

3.
Sci Rep ; 7: 43630, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262815

RESUMO

New high-resolution U-Pb dates indicate a duration of 89 ± 38 kyr for the Permian hiatus and of 14 ± 57 kyr for the overlying Triassic microbial limestone in shallow water settings of the Nanpanjiang Basin, South China. The age and duration of the hiatus coincides with the Permian-Triassic boundary (PTB) and the extinction interval in the Meishan Global Stratotype Section and Point, and strongly supports a glacio-eustatic regression, which best explains the genesis of the worldwide hiatus straddling the PTB in shallow water records. In adjacent deep marine troughs, rates of sediment accumulation display a six-fold decrease across the PTB compatible with a dryer and cooler climate as indicated by terrestrial plants. Our model of the Permian-Triassic boundary mass extinction (PTBME) hinges on the synchronicity of the hiatus with the onset of the Siberian Traps volcanism. This early eruptive phase released sulfur-rich volatiles into the stratosphere, thus simultaneously eliciting a short-lived ice age responsible for the global regression and a brief but intense acidification. Abrupt cooling, shrunk habitats on shelves and acidification may all have synergistically triggered the PTBME. Subsequently, the build-up of volcanic CO2 induced a transient cool climate whose early phase saw the deposition of the microbial limestone.


Assuntos
Microbiologia Ambiental , Extinção Biológica , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA