Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 112: 132-137, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37302437

RESUMO

BACKGROUND: Inflammation and depressed mood constitute clinically relevant vulnerability factors for enhanced interoceptive sensitivity and chronic visceral pain, but their putative interaction remains untested in human mechanistic studies. We tested interaction effects of acute systemic inflammation and sad mood on the expectation and experience of visceral pain by combining experimental endotoxemia with a mood induction paradigm. METHODS: The double-blind, placebo-controlled, balanced crossover fMRI-trial in N = 39 healthy male and female volunteers involved 2 study days with either intravenous administration of low-dose lipopolysaccharide (LPS, 0.4 ng/kg body weight; inflammation condition) or saline (placebo condition). On each study, day two scanning sessions were conducted in an experimentally induced negative (i.e., sad) and in a neutral mood state, accomplished in balanced order. As a model of visceral pain, rectal distensions were implemented, which were initially calibrated to be moderately painful. In all sessions, an identical series of visceral pain stimuli was accomplished, signaled by predictive visual conditioning cues to assess pain anticipation. We assessed neural activation during the expectation and experience of visceral pain, along with unpleasantness ratings in a condition combining an inflammatory state with sad mood and in control conditions. All statistical analyses were accomplished using sex as covariate. RESULTS: LPS administration led to an acute systemic inflammatory response (inflammation X time interaction effects for TNF-α, IL-6, and sickness symptoms, all p <.001). The mood paradigm effectively induced distinct mood states (mood X time interaction, p <.001), with greater sadness in the negative mood conditions (both p <.001) but no difference between LPS and saline conditions. Significant main and interaction effects of inflammation and negative mood were observed for pain unpleasantness (all p <.05). During cued pain anticipation, a significant inflammation X mood interaction emerged for activation of the bilateral caudate nucleus and right hippocampus (all pFWE < 0.05). Main effects of both inflammation and mood were observed in multiple regions, including insula, midcingulate cortex, prefrontal gyri, and hippocampus for inflammation, and midcingulate, caudate, and thalamus for mood (all pFWE < 0.05). CONCLUSIONS: Results support an interplay of inflammation and sad mood on striatal and hippocampal circuitry engaged during visceral pain anticipation as well as on pain experience. This may reflect a nocebo mechanism, which may contribute to altered perception and interpretation of bodily signals. At the interface of affective neuroscience and the gut-brain axis, concurrent inflammation and negative mood may be vulnerability factors for chronic visceral pain.


Assuntos
Dor Visceral , Feminino , Humanos , Masculino , Afeto , Encéfalo/fisiologia , Voluntários Saudáveis , Inflamação , Lipopolissacarídeos , Imageamento por Ressonância Magnética , Dor Visceral/psicologia , Estudos Cross-Over
2.
Front Neurosci ; 16: 876490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860299

RESUMO

A role of the immune system in the pathophysiology of pain and hyperalgesia has received growing attention, especially in the context of visceral pain and the gut-brain axis. While acute experimental inflammation can induce visceral hyperalgesia as part of sickness behavior in healthy individuals, it remains unclear if normal plasma levels of circulating pro-inflammatory cytokines contribute to interindividual variability in visceral sensitivity. We herein compiled data from a tightly screened and well-characterized sample of healthy volunteers (N = 98) allowing us to assess associations between visceral sensitivity and gastrointestinal symptoms, and plasma concentrations of three selected pro-inflammatory cytokines (i.e., TNF-α, IL-6, and IL-8), along with cortisol and stress-related psychological variables. For analyses, we compared subgroups created to have distinct pro-inflammatory cytokine profiles, modelling healthy individuals at putative risk or resilience, respectively, for symptoms of the gut-brain axis, and compared them with respect to rectal sensory and pain thresholds and subclinical GI symptoms. Secondly, we computed multiple regression analyses to test if circulating pro-inflammatory markers predict visceral sensitivity in the whole sample. Despite pronounced subgroup differences in pro-inflammatory cytokine and cortisol concentrations, we observed no differences in measures of visceroception. In regression analyses, cytokines did not emerge as predictors. The pain threshold was predicted by emotional state and trait variables, especially state anxiety, together explaining 10.9% of the variance. These negative results do not support the hypothesis that systemic cytokine levels contribute to normal interindividual variability in visceroception in healthy individuals. Trajectories to visceral hyperalgesia as key marker in disorders of gut-brain interactions likely involve complex interactions of biological and psychological factors in keeping with a psychosocial model. Normal variations in systemic cytokines do not appear to constitute a vulnerability factor in otherwise healthy individuals, calling for prospective studies in at risk populations.

3.
Front Neurosci ; 15: 691988, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267625

RESUMO

BACKGROUND: Heart rate variability (HRV) biofeedback has a beneficial impact on perceived stress and emotion regulation. However, its impact on brain function is still unclear. In this study, we aimed to investigate the effect of an 8-week HRV-biofeedback intervention on functional brain connectivity in healthy subjects. METHODS: HRV biofeedback was carried out in five sessions per week, including four at home and one in our lab. A control group played jump'n'run games instead of the training. Functional magnetic resonance imaging was conducted before and after the intervention in both groups. To compute resting state functional connectivity (RSFC), we defined regions of interest in the ventral medial prefrontal cortex (VMPFC) and a total of 260 independent anatomical regions for network-based analysis. Changes of RSFC of the VMPFC to other brain regions were compared between groups. Temporal changes of HRV during the resting state recording were correlated to dynamic functional connectivity of the VMPFC. RESULTS: First, we corroborated the role of the VMPFC in cardiac autonomic regulation. We found that temporal changes of HRV were correlated to dynamic changes of prefrontal connectivity, especially to the middle cingulate cortex, the left insula, supplementary motor area, dorsal and ventral lateral prefrontal regions. The biofeedback group showed a drop in heart rate by 5.2 beats/min and an increased SDNN as a measure of HRV by 8.6 ms (18%) after the intervention. Functional connectivity of the VMPFC increased mainly to the insula, the amygdala, the middle cingulate cortex, and lateral prefrontal regions after biofeedback intervention when compared to changes in the control group. Network-based statistic showed that biofeedback had an influence on a broad functional network of brain regions. CONCLUSION: Our results show that increased heart rate variability induced by HRV-biofeedback is accompanied by changes in functional brain connectivity during resting state.

4.
Physiol Meas ; 40(6): 064001, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31071705

RESUMO

A large body of scientific studies suggest a close relationship between increased vagal function and better cognitive performance. OBJECTIVE: In the current study, we investigated the association between autonomic function and behavioral impulsivity. We hypothesized that heart rate variability (HRV) biofeedback training increases HRV and enhances inhibitory control. APPROACH: A total of 28 healthy participants were recruited. After drop-out, 14 participants completed an eight-week HRV biofeedback training with five training sessions per week including one session at the clinic's laboratory and four sessions at home using a mobile application running on their smartphone. Ten control subjects matched with respect to age and gender played a mobile game according to the same schedule as the biofeedback group. The assessment of autonomic status and the stop-signal task were conducted before the beginning of the training (T1) and after finishing the schedule (T2). MAIN RESULTS: We found a relationship of reaction times in the stop-signal task and standard HRV as well as cardiorespiratory indices. After biofeedback training, short-term HRV and baroreflex function significantly increased by 33% (CI [2%, 64%], p  < 0.05) and 21% (CI [5%, 36%], p  < 0.05), respectively. The performance in the stop-signal task was not affected by the biofeedback intervention. Compared to the changes of autonomic indices in the control group, only a decrease of skin conductance levels in the biofeedback group remained statistically significant. SIGNIFICANCE: Our results indicate that a smartphone-based HRV biofeedback intervention can be applied to improve cardiovagal function in healthy subjects. Although higher HRV was associated with higher levels of inhibitory control, HRV biofeedback had no effect on measures of impulsivity.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Biorretroalimentação Psicológica , Voluntários Saudáveis , Frequência Cardíaca/fisiologia , Comportamento Impulsivo/fisiologia , Smartphone , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA