Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Elife ; 122024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695862

RESUMO

Here, we investigated the mechanisms by which aging-related reductions of the levels of Numb in skeletal muscle fibers contribute to loss of muscle strength and power, two critical features of sarcopenia. Numb is an adaptor protein best known for its critical roles in development, including asymmetric cell division, cell-type specification, and termination of intracellular signaling. Numb expression is reduced in old humans and mice. We previously showed that, in mouse skeletal muscle fibers, Numb is localized to sarcomeres where it is concentrated near triads; conditional inactivation of Numb and a closely related protein Numb-like (Numbl) in mouse myofibers caused weakness, disorganization of sarcomeres, and smaller mitochondria with impaired function. Here, we found that a single knockout of Numb in myofibers causes reduction in tetanic force comparable to a double Numb, Numbl knockout. We found by proteomics analysis of protein complexes isolated from C2C12 myotubes by immunoprecipitation using antibodies against Numb that Septin 7 is a potential Numb-binding partner. Septin 7 is a member of the family of GTP-binding proteins that organize into filaments, sheets, and rings, and is considered part of the cytoskeleton. Immunofluorescence evaluation revealed a partial overlap of staining for Numb and Septin 7 in myofibers. Conditional, inducible knockouts of Numb led to disorganization of Septin 7 staining in myofibers. These findings indicate that Septin 7 is a Numb-binding partner and suggest that interactions between Numb and Septin 7 are critical for structural organization of the sarcomere and muscle contractile function.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Camundongos Knockout , Contração Muscular , Proteínas do Tecido Nervoso , Sarcômeros , Septinas , Animais , Septinas/metabolismo , Septinas/genética , Sarcômeros/metabolismo , Camundongos , Contração Muscular/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia
2.
Bone ; 184: 117086, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552893

RESUMO

PURPOSE: Mitofusin 2 (Mfn2) is one of two mitofusins involved in regulating mitochondrial size, shape and function, including mitophagy, an important cellular mechanism to limit oxidative stress. Reduced expression of Mfn2 has been associated with impaired osteoblast differentiation and function and a reduction in the number of viable osteocytes in bone. We hypothesized that the genetic absence of Mfn2 in these cells would increase their susceptibility to aging-associated metabolic stress, leading to a progressive impairment in skeletal homeostasis over time. METHODS: Mfn2 was selectively deleted in vivo at three different stages of osteoblast lineage commitment by crossing mice in which the Mfn2 gene was floxed with transgenic mice expressing Cre under the control of the promoter for Osterix (OSX), collagen1a1, or DMP1 (Dentin Matrix Acidic Phosphoprotein 1). RESULTS: Mice in which Mfn2 was deleted using DMP1-cre demonstrated a progressive and dramatic decline in bone mineral density (BMD) beginning at 10 weeks of age (n = 5 for each sex and each genotype from age 10 to 20 weeks). By 15 weeks, there was evidence for a functional decline in muscle performance as assessed using a rotarod apparatus (n = 3; 2 males/ 1 female for each genotype), accompanied by a decline in lean body mass. A marked reduction in trabecular bone mass was evident on bone histomorphometry, and biomechanical testing at 25 weeks (k/o: 2 male/1 female, control 2 male/2 female) revealed severely impaired femur strength. Extensive regional myofiber atrophy and degeneration was observed on skeletal muscle histology. Electron microscopy showed progressive disruption of cellular architecture, with disorganized sarcomeres and a bloated mitochondrial reticulum. There was also evidence of neurodegeneration within the ventral horn and roots of the lumbar spinal cord, which was accompanied by myelin loss and myofiber atrophy. Deletion of Mfn2 using OSX-cre or Col1a1-cre did not result in a musculoskeletal phenotype. Where possible, male and female animals were analyzed separately, but small numbers of animals in each group limited statistical power. For other outcomes, where sex was not considered, small sample sizes might still limit the strength of the observation. CONCLUSION: Despite known functional overlap of Mfn1 and Mfn2 in some tissues, and their co-expression in bone, muscle and spinal cord, deletion of Mfn2 using the 8 kB DMP1 promoter uncovered an important non-redundant role for Mfn2 in maintaining the neuromuscular/bone axis.


Assuntos
Densidade Óssea , GTP Fosfo-Hidrolases , Animais , Feminino , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Masculino , Camundongos , Densidade Óssea/genética , Densidade Óssea/fisiologia , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Osso e Ossos/patologia , Osso e Ossos/metabolismo , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Osteoblastos/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética
3.
Antioxidants (Basel) ; 13(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38397787

RESUMO

Healing in compromised and complicated bone defects is often prolonged and delayed due to the lack of bioactivity of the fixation device, secondary infections, and associated oxidative stress. Here, we propose amorphous silicon oxynitride (SiONx) as a coating for the fixation devices to improve both bioactivity and bacteriostatic activity and reduce oxidative stress. We aimed to study the effect of increasing the N/O ratio in the SiONx to fine-tune the cellular activity and the antioxidant effect via the NRF2 pathway under oxidative stress conditions. The in vitro studies involved using human mesenchymal stem cells (MSCs) to examine the effect of SiONx coatings on osteogenesis with and without toxic oxidative stress. Additionally, bacterial growth on SiONx surfaces was studied using methicillin-resistant Staphylococcus aureus (MRSA) colonies. NRF2 siRNA transfection was performed on the hMSCs (NRF2-KD) to study the antioxidant response to silicon ions. The SiONx implant surfaces showed a >4-fold decrease in bacterial growth vs. bare titanium as a control. Increasing the N/O ratio in the SiONx implants increased the alkaline phosphatase activity >1.5 times, and the other osteogenic markers (osteocalcin, RUNX2, and Osterix) were increased >2-fold under normal conditions. Increasing the N/O ratio in SiONx enhanced the protective effects and improved cell viability against toxic oxidative stress conditions. There was a significant increase in osteocalcin activity compared to the uncoated group, along with increased antioxidant activity under oxidative stress conditions. In NRF2-KD cells, there was a stunted effect on the upregulation of antioxidant markers by silicon ions, indicating a role for NRF2. In conclusion, the SiONx coatings studied here displayed bacteriostatic properties. These materials promoted osteogenic markers under toxic oxidative stress conditions while also enhancing antioxidant NRF2 activity. These results indicate the potential of SiONx coatings to induce in vivo bone regeneration in a challenging oxidative stress environment.

4.
Sci Rep ; 13(1): 17083, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816783

RESUMO

Declining physical performance with age and disease is an important indicator of declining health. Biomarkers that identify declining physical performance would be useful in predicting treatment outcomes and identifying potential therapeutics. γ-aminobutyric acid (GABA), a muscle autocrine factor, is a potent inhibitor of muscle function and works as a muscle relaxant. L-α-aminobutyric acid (L-AABA) is a biomarker for malnutrition, liver damage, and depression. We sought to determine if GABA and L-AABA may be useful for predicting physical performance. Serum levels of GABA and L-AABA were quantified in 120 individuals divided by age, sex, and physical capacity into low, average, and high performer groups. Analyses explored correlations between serum levels and physical performance. Both GABA and the ratio of GABA/AABA (G/A), but not AABA, were highly positively associated with age (Pearson correlations r = 0.35, p = 0.0001 for GABA, r = 0.31, p = 0.0007 for G/A, n = 120). GABA showed negative associations in the whole cohort with physical performance [fast gait speed, 6 min walk test (6MWT), PROMIS score, and SF36PFS raw score] and with subtotal and femoral neck bone mineral density. L-AABA was positively associated with usual gait speed, 6MWT, total SPPB score, and SF36PFS raw score in the total cohort of 120 human subjects, also with 6MWT and SF36PFS raw score in the 60 male subjects, but no associations were observed in the 60 females. As both GABA and L-AABA appear to be indicative of physical performance, but in opposite directions, we examined the G/A ratio. Unlike GABA, the G/A ratio showed a more distinct association with mobility tests such as total SPPB score, usual and fast gait speed, 6MWT, and SF36PFS raw score in the males, regardless of age and metabolic status. Serum G/A ratio could be potentially linked to physical performance in the male population. Our findings strongly suggest that GABA, L-AABA, and the G/A ratio in human serum may be useful markers for both age and physical function. These new biomarkers may significantly enhance the goal of identifying universal biomarkers to accurately predict physical performance and the beneficial effects of exercise training for older adults.


Assuntos
Aminobutiratos , Ácido gama-Aminobutírico , Feminino , Humanos , Masculino , Idoso , Desempenho Físico Funcional , Envelhecimento , Biomarcadores
5.
Sci Rep ; 13(1): 17212, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821627

RESUMO

As both L- and D-BAIBA are increased with exercise, we sought to determine if circulating levels would be associated with physical performance. Serum levels of L- and D-BAIBA were quantified in 120 individuals (50% female) aged 20-85 years and categorized as either a "low" (LP), "average" (AP) or "high" performing (HP). Association analysis was performed using Spearman (S) and Pearson (P) correlation. Using Spearman correlation, L-BAIBA positively associated with (1) body mass index BMI (0.23) and total fat mass (0.19) in the 120 participants, (2) total fat mass in the 60 males (0.26), and (3) bone mineral density, BMD, (0.28) in addition to BMI (0.26) in the 60 females. In HP females, L-BAIBA positively associated with BMD (0.50) and lean mass (0.47). D-BAIBA was positively associated with (1) age (P 0.20) in the 120 participants, (2) age (P 0.49) in the LP females and (3) with gait speed (S 0.20) in the 120 participants. However, in HP males, this enantiomer had a negative association with appendicular lean/height (S - 0.52) and in the AP males a negative correlation with BMD (S - 0.47). No associations were observed in HP or AP females, whereas, in LP females, a positive association was observed with grip strength (S 0.45), but a negative with BMD (P - 0.52, S - 0.63) and chair stands (P - 0.47, S - 0.51). L-BAIBA may play a role in BMI and BMD in females, not males, whereas D-BAIBA may be a marker for aging and physical performance. The association of L-BAIBA with BMI and fat mass may reveal novel, not previously described functions for this enantiomer.


Assuntos
Densidade Óssea , Desempenho Físico Funcional , Masculino , Humanos , Feminino , Índice de Massa Corporal , Composição Corporal , Absorciometria de Fóton
6.
Elife ; 122023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37672386

RESUMO

While mitochondria in different tissues have distinct preferences for energy sources, they are flexible in utilizing competing substrates for metabolism according to physiological and nutritional circumstances. However, the regulatory mechanisms and significance of metabolic flexibility are not completely understood. Here, we report that the deletion of Ptpmt1, a mitochondria-based phosphatase, critically alters mitochondrial fuel selection - the utilization of pyruvate, a key mitochondrial substrate derived from glucose (the major simple carbohydrate), is inhibited, whereas the fatty acid utilization is enhanced. Ptpmt1 knockout does not impact the development of the skeletal muscle or heart. However, the metabolic inflexibility ultimately leads to muscular atrophy, heart failure, and sudden death. Mechanistic analyses reveal that the prolonged substrate shift from carbohydrates to lipids causes oxidative stress and mitochondrial destruction, which in turn results in marked accumulation of lipids and profound damage in the knockout muscle cells and cardiomyocytes. Interestingly, Ptpmt1 deletion from the liver or adipose tissue does not generate any local or systemic defects. These findings suggest that Ptpmt1 plays an important role in maintaining mitochondrial flexibility and that their balanced utilization of carbohydrates and lipids is essential for both the skeletal muscle and the heart despite the two tissues having different preferred energy sources.


Cells are powered by mitochondria, a group of organelles that produce chemical energy in the form of molecules called ATP. This energy is derived from the breakdown of carbohydrates, fats, and proteins. The number of mitochondria in a cell and the energy source they use to produce ATP varies depending on the type of cell. Mitochondria can also switch the molecules they use to produce energy when the cell is responding to stress or disease. The heart and the skeletal muscles ­ which allow movement ­ are two tissues that require large amounts of energy, but it remained unknown whether disrupting mitochondrial fuel selection affects how these tissues work. To answer these questions, Zheng, Li, Li et al. investigated the role of an enzyme found in mitochondria called Ptpmt1. Genetically deleting Ptpmt1 in the heart and skeletal muscle of mice showed that while the development of these organs was not affected, mitochondria in these cells switched from using carbohydrates to using fats as an energy source. Over time, this shift damaged both the mitochondria and the tissues, leading to muscle wasting, heart failure, and sudden death in the mice. This suggests that balanced use of carbohydrates and fats is essential for the muscles and heart. These findings imply that long-term use of medications that alter the fuel that mitochondria use may be detrimental to patients' health and could cause heart dysfunction. This may be important for future drug development, as well as informing decisions about medication taken in the clinic.


Assuntos
Insuficiência Cardíaca , Animais , Camundongos , Ácidos Graxos , Glucose , Insuficiência Cardíaca/genética , Camundongos Knockout , Mitocôndrias , Atrofia Muscular
7.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37461567

RESUMO

Here, we investigated mechanisms by which aging-related reductions of the levels of Numb in skeletal muscle fibers contribute to loss of muscle strength and power, two critical features of sarcopenia. Numb is an adaptor protein best known for its critical roles in development including asymmetric cell division, cell-type specification and termination of intracellular signaling. Numb expression is reduced in old humans and mice. We previously showed that, in mouse skeletal muscle fibers, Numb is localized to sarcomeres where it is concentrated near triads; conditional inactivation of Numb and a closely related protein Numb-like (NumbL) in mouse myofibers caused weakness, disorganization of sarcomeres and smaller mitochondria with impaired function. Here, we found that a single knockout of Numb in myofibers causes reduction in tetanic force comparable to a double Numb, NumbL knockout. We found by proteomics analysis of protein complexes isolated from C2C12 myotubes by immunoprecipitation using antibodies against Numb, that Septin 7 is a potential Numb binding partner. Septin 7 is a member of the family of GTP-binding proteins that organize into filaments, sheets and rings, and is considered part of the cytoskeleton. Immunofluorescence evaluation revealed a partial overlap of staining for Numb and Septin 7 in myofibers. Conditional, inducible knockouts of Numb led to disorganization of Septin 7 staining in myofibers. These findings indicate that Septin 7 is a Numb binding partner and suggest that interactions between Numb and Septin 7 are critical for structural organization of the sarcomere and muscle contractile function.

8.
JBMR Plus ; 7(6): e10746, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37283651

RESUMO

The L-enantiomer of ß-aminoisobutyric acid (BAIBA) is secreted by contracted muscle in mice, and exercise increases serum levels in humans. In mice, L-BAIBA reduces bone loss with unloading, but whether it can have a positive effect with loading is unknown. Since synergism can be more easily observed with sub-optimal amounts of factors/stimulation, we sought to determine whether L-BAIBA could potentiate the effects of sub-optimal loading to enhance bone formation. L-BAIBA was provided in drinking water to C57Bl/6 male mice subjected to either 7 N or 8.25 N of sub-optimal unilateral tibial loading for 2 weeks. The combination of 8.25 N and L-BAIBA significantly increased the periosteal mineral apposition rate and bone formation rate compared to loading alone or BAIBA alone. Though L-BAIBA alone had no effect on bone formation, grip strength was increased, suggesting a positive effect on muscle function. Gene expression analysis of the osteocyte-enriched bone showed that the combination of L-BAIBA and 8.25 N induced the expression of loading-responsive genes such as Wnt1, Wnt10b, and the TGFb and BMP signaling pathways. One dramatic change was the downregulation of histone genes in response to sub-optimal loading and/or L-BAIBA. To determine early gene expression, the osteocyte fraction was harvested within 24 hours of loading. A dramatic effect was observed with L-BAIBA and 8.25 N loading as genes were enriched for pathways regulating the extracellular matrix (Chad, Acan, Col9a2), ion channel activity (Scn4b, Scn7a, Cacna1i), and lipid metabolism (Plin1, Plin4, Cidec). Few changes in gene expression were observed with sub-optimal loading or L-BAIBA alone after 24 hours. These results suggest that these signaling pathways are responsible for the synergistic effects between L-BAIBA and sub-optimal loading. Showing that a small muscle factor can enhance the effects of sub-optimal loading of bone may be of relevance for individuals unable to benefit from optimal exercise. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

9.
Tissue Eng Part C Methods ; 29(8): 349-360, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37097213

RESUMO

Isolated individual myofibers are valuable experimental models that can be used in various conditions to understand skeletal muscle physiology and pathophysiology at the tissue and cellular level. This report details a time- and cost-effective method for isolation of single myofibers from the flexor digitorum brevis (FDB) muscle in both young and aged mice. The FDB muscle was chosen for its documented history in single myofiber experiments. By modifying published methods for FDB myofiber isolation, we have optimized the protocol by first separating FDB muscle into individual bundles before the digestion, followed by optimizing the subsequent digestion medium conditions to ensure reproducibility. Morphological and functional assessments demonstrate a high yield of isolated FDB myofibers with sarcolemma integrity achieved in a shorter time frame than previous published procedures. This method could be also adapted to other types of skeletal muscle. Additionally, this highly reproducible method can greatly reduce the number of animals needed to yield adequate numbers of myofibers for experiments. Thus, this advanced method for myofiber isolation has the potential to accelerate research in skeletal muscle physiology and screening potential therapeutics "ex vivo" for muscle diseases and regeneration.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Camundongos , Animais , Reprodutibilidade dos Testes
10.
Int J Med Sci ; 20(3): 376-384, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860669

RESUMO

Skeletal muscle undergoes rapid and extensive atrophy following nerve transection though the underlying mechanisms remain incompletely understood. We previously showed transiently elevated Notch 1 signaling in denervated skeletal muscle that was abrogated by administration of nandrolone (an anabolic steroid) combined with replacement doses of testosterone. Numb is an adaptor molecule present in myogenic precursors and skeletal muscle fibers that is vital for normal tissue repair after muscle injury and for skeletal muscle contractile function. It is unclear whether the increase in Notch signaling observed in denervated muscle contributes to denervation and whether expression of Numb in myofibers slows denervation atrophy. To address these questions, the degree of denervation atrophy, Notch signaling, and Numb expression was studied over time after denervation in C57B6J mice treated with nandrolone, nandrolone plus testosterone or vehicle. Nandrolone increased Numb expression and reduced Notch signaling. Neither nandrolone alone nor nandrolone plus testosterone changed the rate of denervation atrophy. We next compared rates of denervation atrophy between mice with conditional, tamoxifen-inducible knockout of Numb in myofibers and genetically identical mice treated with vehicle. Numb cKO had no effect on denervation atrophy in this model. Taken together, the data indicate that loss of Numb in myofibers does not alter the course of denervation atrophy and that upregulation of Numb and blunting of the denervation-atrophy induced activation of Notch do not change the course of denervation atrophy.


Assuntos
Músculo Esquelético , Nandrolona , Animais , Camundongos , Testosterona , Atrofia , Denervação , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
11.
Res Sq ; 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36747771

RESUMO

Background: As both L- and D-BAIBA are increased with exercise, we sought to determine if circulating levels would be associated with physical performance. Method: Serum levels of L- and D-BAIBA were quantified in 120 individuals (50% female) aged 20-85 years and categorized as either a "low" (LP), "average"(AP) or "high" performer (HP).Association analysis was performed using Spearman (S) and Pearson (P) rank correlation. Results: Using the Spearman (S) rank correlation, L-BAIBA positively associated with BMI (0.23) and total fat mass (0.19) in the 120 participants, with total fat mass in the 60 males (0.26) but with both BMI (0.26) and BMD (0.28) in the 60 females. In the HP females, L-BAIBA positively associated with BMD (0.50) and lean mass (0.47).Using the Pearson (P) rank correlation D-BAIBA was positively associated with age (0.20) in the 120 participants and in the LP females (0.49). D-BAIBA associated with gait speed (S 0.20) in the 120 participants. In HP males, this enantiomer had a negative association with appendicular lean/height (S -0.52) and in the AP males with BMD (S -0.47). No associations were observed in HP or AP females, whereas, in LP females, in addition to a positive association with age, a positive association was observed with grip strength (S 0.45), but a negative with BMD (P -0.52, S -0.63) and chair stands (P -0.47, S -0.51). Conclusions: L-BAIBA may play a role in BMI and BMD in females, not males, whereas D-BAIBA may be a marker for aging.

12.
Methods Mol Biol ; 2625: 115-127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36653638

RESUMO

Endocannabinoids (eCBs) are a family of lipid molecules with important regulatory function in the brain and immune system. The two well-studied eCBs are arachidonic acid derivatives, N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG). Currently one of the most important methods for quantitative analysis of eCBs and related lipids from biological matrices is liquid chromatographic separation coupled with tandem mass spectroscopy (LC-MS/MS) owing to its high sensitivity and selectivity, as well as no derivatization procedures needed. Here we describe pretreatment procedures using solid-phase extraction for tissue sampling and an in vivo brain microdialysis approach prior to LC-MS/MS analysis, followed by detailed steps of LC-MS/MS analytic method to demonstrate the potential and application of this method in quantification of eCBs and congeners from various biological matrices.


Assuntos
Endocanabinoides , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Ácido Araquidônico , Encéfalo
13.
Methods Mol Biol ; 2625: 299-311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36653652

RESUMO

Accurate determination of prostaglandins (PGs) from biological samples is critical for understanding their biological functions and interactions during physiological and pathological processes. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a highly sensitive, accurate, and high-throughput approach for simultaneous detection of ultra-trace PGs from a single biological sample. Here we describe LC-MS/MS techniques and related sample pretreatment methods including both off-line and on-line SPE for the determination of PGs in biological samples.


Assuntos
Prostaglandinas , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão/métodos
14.
Front Aging ; 4: 1339786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162457
15.
Aging (Albany NY) ; 15(2): 308-352, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36403149

RESUMO

Frailty is the hallmark of aging that can be delayed with exercise. The present studies were initiated based on the hypothesis that long-term voluntary wheel running (VWR) in female mice from 12 to 18 or 22 months of age would have beneficial effects on the musculoskeletal system. Mice were separated into high (HBW) and low (LBW) body weight based on final body weights upon termination of experiments. Bone marrow fat was significantly higher in HBW than LBW under sedentary conditions, but not with VWR. HBW was more protective for soleus size and function than LBW under sedentary conditions, however VWR increased soleus size and function regardless of body weight. VWR plus HBW was more protective against muscle loss with aging. Similar effects of VWR plus HBW were observed with the extensor digitorum longus, EDL, however, LBW with VWR was beneficial in improving EDL fatigue resistance in 18 mo mice and was more beneficial with regards to muscle production of bone protective factors. VWR plus HBW maintained bone in aged animals. In summary, HBW had a more beneficial effect on muscle and bone with aging especially in combination with exercise. These effects were independent of bone marrow fat, suggesting that intrinsic musculoskeletal adaptions were responsible for these beneficial effects.


Assuntos
Atividade Motora , Condicionamento Físico Animal , Camundongos , Feminino , Animais , Atividade Motora/fisiologia , Peso Corporal , Músculo Esquelético , Envelhecimento/fisiologia
16.
Front Aging ; 3: 836791, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821799

RESUMO

Osteoarthritis (OA) is one of the most common causes of disability in aged people, and it is defined as a degenerative arthropathy, characterized by the disruption in joint tissue. The synovium plays a vital role in maintaining the health of the joint by supplying the nutrients to the surrounding tissues and the lubrication for joint movement. While it is well known that all the joint tissues are communicating and working together to provide a functioning joint, most studies on OA have been focused on bone and cartilage but much less about synovium have been reported. The purpose of this review was to investigate the current literature focused on RNA sequencing (RNAseq) of osteoarthritic synovial tissues to further understand the dynamic transcriptome changes occurring in this pivotal joint tissue. A total of 3 electronic databases (PubMed, CINHAL Complete, and Academic Complete) were systematically searched following PRISMA guidelines. The following criteria was used for inclusion: English language, free full text, between the period 2011-2022, size of sample (n > 10), study design being either retrospective or prospective, and RNAseq data of synovial tissue from OA subjects. From the initial search, 174 articles, 5 met all of our criteria and were selected for this review. The RNAseq analysis revealed several differentially expressed genes (DEGs) in synovial tissue. These genes are related to the inflammatory pathway and regulation of the extracellular matrix. The MMP family, particularly MMP13 was identified by three of the studies, indicating its important role in OA. IL6, a key contributor in the inflammation pathway, was also identified in 3 studies. There was a total of 8 DEGs, MMP13, MMP1, MMP2, APOD, IL6, TNFAIP6, FCER1G, and IGF1 that overlapped in 4 out of the 5 studies. One study focused on microbial RNA in the synovial tissue found that the microbes were differentially expressed in OA subjects too. These differentially expressed microbes have also been linked to the inflammatory pathway. Further investigation with more clinical gene profiling in synovial tissue of OA subjects is required to reveal the causation and progression, as well as aid in the development of new treatments.

17.
Front Aging ; 3: 867137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821851

RESUMO

Exercise is an essential component of any good health style, being particularly important for older adults to counteract the effects of aging, including sarcopenia and osteoporosis, which can result in lower fall probability. Exercise programs for older adults are especially designed for that population. A rigorous evaluation of those programs is necessary to assure most benefit is achieved. Serum biomarkers of proteins intrinsic to musculoskeletal homeostasis could contribute objectively to the assessment of the benefits of exercise. In this work, in addition to the usual physical fitness and balance tests, ELISA assays quantified the serum levels of six proteins and one polysaccharide important for the homeostasis of muscle (troponin T and alpha-actinin), tendon/ligament (tenomodulin), cartilage (cartilage oligomeric matrix protein and hyaluronan) and bone (osteocalcin and sclerostin), before and after 8 weeks of an exercise program tailored to older adults, Stay Strong Stay Healthy, offered at a Community Center and at an Independent Senior Living facility. Statistical significance was determined by non-parametric tests (Wilcoxon Signed Ranks and Mann-Whitney U). Physical fitness and balance improved as expected along with a significant decrease in sclerostin, pointing to less inhibition of bone deposition. However, when considering each type of dwelling separately, older adults always saw a significant decrease of the isoform of troponin T associated with fast-twitch muscles, suggesting that daily levels of physical activity may also have a role in the benefit of older adults from exercise.

19.
Mech Ageing Dev ; 206: 111690, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35752298

RESUMO

Osteosarcopenia is an age-related condition characterized by fragile bone and low muscle mass and function. Fat infiltration concomitantly contributes to age-related bone and muscle decline. Fat-secreted factors could be locally secreted in the muscle and bone marrow milieu affecting cell function and survival. However, the specific fat-related secretory factors that may simultaneously affect those tissues remain unknown. Using targeted-lipidomics approach, we comprehensively quantified fat composition (lipid mediators [LMs]) in bone marrow flush, gastrocnemius and serum obtained from 6-, 24- and 42-week-old C57BL6 mice. Compared to young mice (6wks), all tissues in older mice showed significantly higher levels of arachidonic acid (AA) and AA-derived eicosanoids, PGA 2, TXB 2, and 11,12-EET, which are known to affect muscle and bone function. Moreover, Lipoxin B4, another AA product and an enhancer of bone turnover and negative regulator for muscle, showed significantly lower values in older mice compared to young mice in both genders. Furthermore, eicosapentaenoic acid and docosahexaenoic acid autoxidation products (20-HDoHE, 11-HDoHE, 7-HDoHE and 4-HDoHE), and omega-3 fatty acids that negatively regulate bone and muscle health, were significantly higher in older mice. In conclusion, these results suggest that LMs could play a role in modulating musculoskeletal function during aging.


Assuntos
Medula Óssea , Ácido Eicosapentaenoico , Envelhecimento , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético
20.
Mol Cell Biochem ; 477(6): 1829-1848, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35334034

RESUMO

The nicotinamide adenine dinucleotide (NAD+) is an essential redox cofactor, involved in various physiological and molecular processes, including energy metabolism, epigenetics, aging, and metabolic diseases. NAD+ repletion ameliorates muscular dystrophy and improves the mitochondrial and muscle stem cell function and thereby increase lifespan in mice. Accordingly, NAD+ is considered as an anti-oxidant and anti-aging molecule. NAD+ plays a central role in energy metabolism and the energy produced is used for movements, thermoregulation, and defense against foreign bodies. The dietary precursors of NAD+ synthesis is targeted to improve NAD+ biosynthesis; however, studies have revealed conflicting results regarding skeletal muscle-specific effects. Recent advances in the activation of nicotinamide phosphoribosyltransferase in the NAD+ salvage pathway and supplementation of NAD+ precursors have led to beneficial effects in skeletal muscle pathophysiology and function during aging and associated metabolic diseases. NAD+ is also involved in the epigenetic regulation and post-translational modifications of proteins that are involved in various cellular processes to maintain tissue homeostasis. This review provides detailed insights into the roles of NAD+ along with molecular mechanisms during aging and disease conditions, such as the impacts of age-related NAD+ deficiencies on NAD+-dependent enzymes, including poly (ADP-ribose) polymerase (PARPs), CD38, and sirtuins within skeletal muscle, and the most recent studies on the potential of nutritional supplementation and distinct modes of exercise to replenish the NAD+ pool.


Assuntos
Doenças Musculares , NAD , Envelhecimento/metabolismo , Animais , Epigênese Genética , Camundongos , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , NAD/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA