Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Orthop Trauma ; 38(4): e133-e141, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38206679

RESUMO

OBJECTIVES: The objective of this work was to develop a model of intra-articular fracture (IAF) in a rabbit and document the speed and severity of degenerative joint changes after fracture fixation. METHODS: With Institutional Animal Care & Use Committee approval, impact-induced IAFs were created in the distal tibia of 16 New Zealand White rabbits. Fractures were fixed with a plate and screws. Pain and function were monitored at regular postoperative intervals with limb loading analysis. Twelve or 26 weeks after fracture, animals were euthanized for histological assessment of cartilage degeneration and micro-computed tomography analysis of bone histomorphometry. RESULTS: Eleven animals successfully completed the study. Maximum foot force in the fractured limb was 41% ± 21% lower than preoperative values ( P = 0.006) 12 weeks after fracture and remained 25% ± 13% lower ( P = 0.081) after 26 weeks. Cortical bone mineral density in micro-computed tomography images was 34% ± 13% lower 12 weeks after fracture ( P < 0.001) and remained (42% ± 8%) lower 26 weeks after fracture ( P < 0.001). Twelve weeks after fracture, Mankin scores of cartilage degeneration were significantly higher in the medial talus ( P = 0.007), lateral talus ( P < 0.001), medial tibia ( P = 0.017), and lateral tibia ( P = 0.002) of the fractured limb compared with the uninjured contralateral limb. Average Mankin scores in the talus increased from 12 to 26 weeks (5.9 ± 0.9 to 9.4 ± 0.4; P < 0.001 lateral; 5.4 ± 1.8 to 7.8 ± 2.0; P = 0.043 medial), indicating substantial and progressive joint degeneration. CONCLUSIONS: The ankle joint of the New Zealand White rabbit provides the smallest available model of impact-induced IAF that can be treated with clinically relevant techniques and replicates key features of healing and degeneration found in human patients.


Assuntos
Fraturas Ósseas , Fraturas Intra-Articulares , Osteoartrite , Humanos , Coelhos , Animais , Fraturas Intra-Articulares/diagnóstico por imagem , Fraturas Intra-Articulares/cirurgia , Microtomografia por Raio-X , Fixação Interna de Fraturas/métodos , Osteoartrite/diagnóstico por imagem , Osteoartrite/etiologia
2.
Iowa Orthop J ; 43(1): 77-86, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383848

RESUMO

Background: Radiotherapy for tumor treatment in or near bones often causes osteopenia and/or osteoporosis, and the resulting increased bone fragility can lead to pathologic fractures. Bone mineral density (BMD) is often used to screen for fracture risk, but no conclusive relationship has been established between BMD and the microstructural/ biomechanical changes in irradiated bone. Understanding the effects of radiation dosing regimen on the bone structure-strength relationship would improve the ability to reduce fracture-related complications resulting from cancer treatment. Methods: Thirty-two C57B6J mice aged 10 - 12 weeks old were randomized to single dose (1 x 25 Gy) and fractionated dose (5 x 5 Gy) irradiation groups. Right hindlimbs were irradiated while the contralateral hindlimbs served as the non-irradiated control. Twelve weeks after irradiation, BMD and bone microstructure were assessed with micro-computed tomography, and mechanical strength/stiffness was assessed with a torsion test. The effects of radiation dosing regimen on bone microstructure and strength were assessed using ANOVA, and bone strength-structure relationships were investigated through correlation analysis of microstructural and mechanical parameters. Results: Fractionated irradiation induced significantly greater losses in BMD in the femur (23% - male mice, p=0.016; 19% - female mice) and the tibia (18% - male mice; 6% - female mice) than the single-dose radiation. The associated reductions in trabecular bone volume (-38%) and trabecular number (-34% to -42%), and the increase in trabecular separation (23% to 29%) were only significant in the male mice with fractionated dosing. There was a significant reduction in fracture torque in the femurs of male (p=0.021) and female (p=0.0017) mice within the fractionated radiation group, but not in the single dose radiation groups. There was moderate correlation between bone microstructure and mechanical strength in the single-dose radiation group (r = 0.54 to 0.73), but no correlation in the fractionated dosing group (r=0.02 to 0.03). Conclusion: Our data indicate more detrimental changes in bone microstructure and mechanical parameters in the fractionated irradiation group compared to the single dose group. This may suggest the potential for protecting bone if a needed therapeutic radiation dose can be delivered in a single session rather than administered in fractions.


Assuntos
Fraturas Ósseas , Osteoporose , Animais , Feminino , Masculino , Camundongos , Densidade Óssea , Fêmur , Microtomografia por Raio-X
3.
Biomed Eng Comput Biol ; 14: 11795972231166240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020922

RESUMO

Background and objectives: Femurs affected by metastatic bone disease (MBD) frequently undergo surgery to prevent impending pathologic fractures due to clinician-perceived increases in fracture risk. Finite element (FE) models can provide more objective assessments of fracture risk. However, FE models of femurs with MBD have implemented strain- and strength-based estimates of fracture risk under a wide variety of loading configurations, and "physiologic" loading models typically simulate a single abductor force. Due to these variations, it is currently difficult to interpret mechanical fracture risk results across studies of femoral MBD. Our aims were to evaluate (1) differences in mechanical behavior between idealized loading configurations and those incorporating physiologic muscle forces, and (2) differences in the rankings of mechanical behavior between different loading configurations, in FE simulations to predict fracture risk in femurs with MBD. Methods: We evaluated 9 different patient-specific FE loading simulations for a cohort of 54 MBD femurs: strain outcome simulations-physiologic (normal walking [NW], stair ascent [SA], stumbling), and joint contact only (NW contact force, excluding muscle forces); strength outcome simulations-physiologic (NW, SA), joint contact only, offset torsion, and sideways fall. Tensile principal strain and femur strength were compared between simulations using statistical analyses. Results: Tensile principal strain was 26% higher (R 2 = 0.719, P < .001) and femur strength was 4% lower (R 2 = 0.984, P < .001) in simulations excluding physiologic muscle forces. Rankings of the mechanical predictions were correlated between the strain outcome simulations (ρ = 0.723 to 0.990, P < .001), and between strength outcome simulations (ρ = 0.524 to 0.984, P < .001). Conclusions: Overall, simulations incorporating physiologic muscle forces affected local strain outcomes more than global strength outcomes. Absolute values of strain and strength computed using idealized (no muscle forces) and physiologic loading configurations should be used within the appropriate context when interpreting fracture risk in femurs with MBD.

4.
Iowa Orthop J ; 43(2): 70-78, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38213856

RESUMO

Background: Many patients with metastatic bone disease (MBD) of the femur undergo prophylactic surgical fixation for impending pathologic fractures; intramedullary nailing (IMN) being the most common fixation type. However, surgeons often question if IMN fixation provides sufficient improvements in mechanical strength for particular metastatic lesions. Our goal was to use patient-specific finite element (FE) modeling to computationally evaluate the effects of simulated IMN fixation on the mechanics of femurs affected with MBD. Methods: Computed tomography (CT) scans were available retrospectively from 48 patients (54 femurs) with proximal femoral metastases. The CT scans were used to create patient-specific, non-linear, voxel-based FE models of the femur, simulating the instant of peak hip joint contact force during normal walking. FE analyses were repeated after incorporating virtual IMN fixation (Smith and Nephew, TRIGEN INTERTAN) into the same femurs. Femur strength and load-to-strength ratio (LSR; lower LSR indicates lower fracture risk) were compared between untreated and IMN conditions using statistical analyses. Results: IMN fixation resulted in a very modest average 10% increase in mechanical strength (p<0.001), which was associated with a slight 7% reduction in fracture risk (p<0.001). However, there was considerable variation in fracture risk reduction between individual femurs (0.13-50%). In femurs with the largest reduction in fracture risk (>10%), IMN hardware directly passed through a considerable section of that femur's metastatic lesion. Femurs with lytic (10%) and diffuse (9%) metastases tended to have greater reductions in fracture risk compared to femurs with blastic (5%) and mixed (4%) metastases (p=0.073). Conclusion: Given the mechanically strong baseline condition of most femurs in this cohort, evident by the low fracture risk at the time of CT scanning, the relative increase in stiffness with the addition of the IMN hardware may not make a substantial contribution to overall mechanical strength. The mechanical gains of IMN fixation in femurs with MBD appear most beneficial when the hardware traverses an adequate section of the lesion. Level of Evidence: III.


Assuntos
Fraturas do Fêmur , Fixação Intramedular de Fraturas , Humanos , Fraturas do Fêmur/cirurgia , Estudos Retrospectivos , Fêmur/cirurgia , Fêmur/patologia , Fixação Intramedular de Fraturas/métodos , Pinos Ortopédicos
5.
Proc Inst Mech Eng H ; 236(9): 1297-1308, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35787214

RESUMO

Metastatic bone disease (MBD) is often managed by non-specialized orthopedic surgeons who rely on Mirels' criteria to predict pathologic fracture risk. However, low specificity of Mirels' criteria implies many lesions are scored at high fracture risk when the actual mechanical fracture risk is minimal. Our goal was to retrospectively compare mechanical fracture risk in MBD patients to Mirels' score and clinical treatment received. Using a CT-based finite element (FE) model of the proximal femur affected by MBD, femur strength and load-to-strength ratio (LSR) were determined for 52 femurs from 48 patients. Associations of femur strength with pain and Mirels' scores (Pearson r/Spearman ρ correlations), and the decision to operate (percentile analysis), and associations of LSR with pain and Mirels' scores (Spearman correlations) were determined. Nineteen of 52 femurs (37%) had a very low computed mechanical fracture risk (LSR < 0.4); 5 of those 19 underwent prophylactic stabilization, suggesting that clinical decision-making in MBD is substantially influenced by non-mechanical factors that likely overestimate pathologic fracture risk. Of the 30 femurs managed non-operatively, 24 had a low computed mechanical fracture risk (LSR ≤ 0.5), none of which (0%) experienced a fracture within 9 months. Patient-reported pain did not correlate with femur strength (r = -0.05, p = 0.748) nor with LSR (ρ = 0.07, p = 0.632). Mirels' score correlated weakly with femur strength (ρ = -0.32, p = 0.019) and with LSR (ρ = 0.29, p = 0.034). Computational mechanical tools like this FE model could be used as a clinical decision aid when considering non-surgical management in appropriate patients, potentially alleviating nonessential surgical treatment in some patients with femur MBD.


Assuntos
Fraturas Ósseas , Fraturas Espontâneas , Neoplasias , Fêmur , Análise de Elementos Finitos , Humanos , Dor , Estudos Retrospectivos
6.
J Orthop Res ; 40(11): 2609-2619, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35171527

RESUMO

Variations in chondrocyte density and organization in cartilage histology sections are associated with osteoarthritis progression. Rapid, accurate quantification of these two features can facilitate the evaluation of cartilage health and advance the understanding of their significance. The goal of this work was to adapt deep-learning-based methods to detect articular chondrocytes and chondrocyte clones from safranin-O-stained cartilage to evaluate chondrocyte cellularity and organization. The U-net and "you-only-look-once" (YOLO) models were trained and validated for identifying chondrocytes and chondrocyte clones, respectively. Validated models were then used to quantify chondrocyte and clone density in talar cartilage from Yucatan minipigs sacrificed 1 week, 3, 6, and 12 months after fixation of an intra-articular fracture of the hock joint. There was excellent/good agreement between expert researchers and the developed models in identifying chondrocytes/clones (U-net: R2 = 0.93, y = 0.90x-0.69; median F1 score: 0.87/YOLO: R2 = 0.79, y = 0.95x; median F1 score: 0.67). Average chondrocyte density increased 1 week after fracture (from 774 to 856 cells/mm2 ), decreased substantially 3 months after fracture (610 cells/mm2 ), and slowly increased 6 and 12 months after fracture (638 and 683 cells/mm2 , respectively). Average detected clone density 3, 6, and 12 months after fracture (11, 11, 9 clones/mm2 ) was higher than the 4-5 clones/mm2 detected in normal tissue or 1 week after fracture and show local increases in clone density that varied across the joint surface with time. The accurate evaluation of cartilage cellularity and organization provided by this deep learning approach will increase objectivity of cartilage injury and regeneration assessments.


Assuntos
Cartilagem Articular , Condrócitos , Animais , Cartilagem Articular/patologia , Condrócitos/patologia , Clonagem Molecular , Redes Neurais de Computação , Suínos , Porco Miniatura
7.
J Orthop Res ; 40(11): 2632-2645, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35088436

RESUMO

Hip dysplasia is known to lead to premature osteoarthritis. Computational models of joint mechanics have documented elevated contact stresses in dysplastic hips, but elevated stress has not been directly associated with regional cartilage degeneration. The purpose of this study was to determine if a relationship exists between elevated contact stress and intra-articular cartilage damage in patients with symptomatic dysplasia and femoroacetabular impingement. Discrete element analysis was used to compute hip contact stresses during the stance phase of walking gait for 15 patients diagnosed with acetabular dysplasia and femoral head-neck offset deformity. Contact stresses were summed over the duration of the walking gait cycle and then scaled by patient age to obtain a measure of chronic cartilage contact stress exposure. Linear regression analysis was used to evaluate the relationship between contact stress exposure and cartilage damage in each of six acetabular subregions that had been evaluated arthroscopically for cartilage damage at the time of surgical intervention. A significant correlation (R2 = 0.423, p < 0.001) was identified between chondromalacia grade and chronic stress-time exposure above both a 1 MPa damage threshold and a 2 MPa-years accumulated damage threshold. Furthermore, an over-exposure threshold of 15% regional contact area exceeding the 1 and 2 MPa-years threshold values resulted in correct identification of cartilage damage in 83.3% (55/66) of the acetabular subregions loaded during gait. These results suggest corrective surgery to alleviate impingement and reduce chronic contact stress exposures below these damage-inducing thresholds could mitigate further cartilage damage in patients with hip dysplasia.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Impacto Femoroacetabular , Luxação Congênita de Quadril , Luxação do Quadril , Acetábulo/cirurgia , Cartilagem Articular/cirurgia , Impacto Femoroacetabular/cirurgia , Luxação Congênita de Quadril/complicações , Luxação Congênita de Quadril/cirurgia , Articulação do Quadril/cirurgia , Humanos
8.
J Orthop Res ; 40(5): 1203-1212, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34191348

RESUMO

The goal of this study was to develop, validate, and implement an image analysis framework to automatically analyze chondrocytes in 3D image stacks of cartilage acquired using a fluorescent confocal microscope. Source specimens consist of viable osteochondral tissue co-stained with multiple live-cell dyes. Our framework utilizes a seeded watershed-based algorithm to automatically segment individual chondrocytes in each 2D slice of the confocal image stack. The resulting cell segmentations are colocalized in 3D to eliminate duplicate segmentation of the same cell resulting from the visibility of fluorescence signal in multiple imaging planes, and the 3D cell distribution is used to automatically define the cartilage tissue volume. The algorithm then provides chondrocyte density data, and the associated segmentation can be used as a mask to extract and quantify per cell intensity of a secondary, functional dye co-staining the chondrocytes. The accuracy of the automated chondrocyte segmentation was validated against manual segmentations (average IOU = 0.79). When applied to a cartilage surrogate, this analysis framework estimated chondrocyte density within 10% of the true density and demonstrated a good agreement between framework's counts and manual counts (R2 = 0.99). In a real application, the framework was able to detect the increased dye signal of monochlorobimane (MCB) in chondrocytes treated with N-acetylcysteine (NAC) after mechanical injury, quantifying intracellular biochemical changes in living cells. This new framework allows for fast and accurate quantification of intracellular activities of chondrocytes, and it can be adapted for broader application in many imaging and treatment modalities, including therapeutic OA research.


Assuntos
Cartilagem Articular , Condrócitos , Cartilagem , Cartilagem Articular/diagnóstico por imagem , Condrócitos/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Articulações , Coloração e Rotulagem
9.
Hum Gene Ther ; 33(9-10): 529-540, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610749

RESUMO

Lubricin, a glycoprotein encoded by the proteoglycan 4 (PRG4) gene, is an essential boundary lubricant that reduces friction between articular cartilage surfaces. The loss of lubricin subsequent to joint injury plays a role in the pathogenesis of posttraumatic osteoarthritis. In this study, we describe the development and evaluation of an adeno-associated virus (AAV)-based PRG4 gene therapy intended to restore lubricin in injured joints. The green fluorescent protein (GFP) gene was inserted the PRG4 gene to facilitate tracing the distribution of the transgene product (AAV-PRG4-GFP) in vivo. Transduction efficiency of AAV-PRG4-GFP was evaluated in joint cells, and the conditioned medium containing secreted PRG4-GFP was used for shear loading/friction and viability tests. In vivo transduction of joint tissues following intra-articular injection of AAV-PRG4-GFP was confirmed in the mouse stifle joint in a surgical model of destabilization of the medial meniscus (DMM), and chondroprotective activity was tested in a rabbit anterior cruciate ligament transection (ACLT) model. In vitro studies showed that PRG4-GFP has lubricin-like cartilage-binding and antifriction properties. Significant cytoprotective effects were seen when cartilage was soaked in PRG4-GFP before cyclic shear loading (n = 3). Polymerase chain reaction and confocal microscopy confirmed the presence of PRG4-GFP DNA and protein, respectively, in a mouse DMM (n = 3 per group). In the rabbit ACLT model, AAV-PRG4-GFP gene therapy enhanced lubricin expression (p = 0.001 vs. AAV-GFP: n = 7-14) and protected the cartilage from degeneration (p = 0.014 vs. AAV-GFP: n = 9-10) when treatments were administered immediately postoperation, but efficacy was lost when treatment was delayed for 2 weeks. AAV-PRG4-GFP gene therapy protected cartilage from degeneration in a rabbit ACLT model; however, data from the ACLT model suggest that early intervention is essential for efficacy.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Cartilagem Articular/metabolismo , Dependovirus/genética , Terapia Genética , Camundongos , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/terapia , Proteoglicanas/genética , Coelhos
10.
J Biomech ; 109: 109891, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32807310

RESUMO

Abnormal femoral version is a deformity in the angle between the femoral neck and the transcondylar axis of the knee. Both femoral anteversion and retroversion alter passive and active rotation of the hip and are associated with intra-articular or extra-articular impingement. However, little is known about the effect of abnormal femoral version on intra-articular hip contact stresses. To quantify the effect of femoral version on hip contact stress, five cadaveric pelvis specimens were mechanically tested with a hip-specific Tekscan sensor inserted in the joint space. Specimens were oriented in a heel-strike position and loaded with 1000 N of compressive force. Pressure measurements were recorded by the Tekscan sensor with the femur oriented in 0°, 15°, and 30° of version. At the completion of testing, specimens were locked into place at 0° and post-test CT scans were obtained to register the pressure sensor measurements to the joint anatomy. There were minor changes in contact area (<7%) and translation of the peak contact stress location (8.8 ± 7.6 mm). There was no significant change in peak contact stress (p = 0.901) in either the retroverted (0°) or anteverted (30°) conditions relative to normal version (15°) under identical gait-related loading conditions. While abnormalities in patient gait and resultant joint loading caused by femoral version abnormalities may contribute to hip pain, the present findings would suggest that future joint degeneration in hips with version abnormalities are not simply the result of abnormal contact stress induced by joint incongruity due to femoral version abnormalities.


Assuntos
Fêmur , Articulação do Quadril , Acetábulo , Cadáver , Fêmur/diagnóstico por imagem , Quadril , Humanos , Amplitude de Movimento Articular
11.
J Biomech ; 106: 109825, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32517984

RESUMO

Metastatic disease in bone is characterized by highly amorphous and variable lesion geometry, with increased fracture risk. Assumptions of idealized lesion geometry made in previous finite element (FE) studies of metastatic disease in the proximal femur may not sufficiently capture effects of local stress/strain concentrations on predicted failure strength. The goal of this study was to develop and validate a FE failure model of the proximal femur incorporating artificial defects representative of physiologic metastatic disease. Data from 11 cadaveric femur specimens were randomly divided into either a training set (n = 5) or a test set (n = 6). Clinically representative artificial defects were created, and the femurs were loaded to failure under offset torsion. Voxel-based FE models replicating the experimental setup were created from the training set pre-fracture computed tomography data. Failure loads from the linear model with maximum principal strain failure criterion correlated best with the experimental data (R2 = 0.86, p = 0.024). The developed model was found to be reliable when applied to the test dataset with a relatively low RMSE of 46.9 N, mean absolute percent error of 12.7 ± 17.1%, and cross-validation R2 = 0.88 (p < 0.001). Models simulating realistic lesion geometry explained an additional 26% of the variance in experimental failure load compared to idealized lesion models (R2 = 0.62, p = 0.062). Our validated automated FE model representative of physiologic metastatic disease may improve clinical fracture risk prediction and facilitate research studies of fracture risk during functional activities and with treatment interventions.


Assuntos
Fêmur , Fraturas Ósseas , Fêmur/diagnóstico por imagem , Análise de Elementos Finitos , Humanos , Modelos Lineares , Modelos Biológicos , Tomografia Computadorizada por Raios X
12.
J Orthop Res ; 38(3): 629-638, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31692083

RESUMO

Joint stiffness due to fibrosis/capsule contracture is a seriously disabling complication of articular injury that surgical interventions often fail to completely resolve. Fibrosis/contracture is associated with the abnormal persistence of myofibroblasts, which over-produce and contract collagen matrices. We hypothesized that intra-articular therapy with drugs targeting myofibroblast survival (sulfasalazine), or collagen production (ß-aminopropionitrile and cis-hydroxyproline), would reduce joint stiffness in a rabbit model of fibrosis/contracture. Drugs were encapsulated in poly[lactic-co-glycolic] acid pellets and implanted in joints after fibrosis/contracture induction. Capsule α-smooth muscle actin (α-SMA) expression and intimal thickness were evaluated by immunohistochemistry and histomorphometry, respectively. Joint stiffness was quantified by flexion-extension testing. Drawer tests were employed to determine if the drugs induced cruciate ligament laxity. Joint capsule fibroblasts were tested in vitro for contractile activity and α-SMA expression. Stiffness in immobilized joints treated with blank pellets (control) was significantly higher than in non-immobilized, untreated joints (normal) (p = 0.0008), and higher than in immobilized joints treated with sulfasalazine (p = 0.0065). None of the drugs caused significant cruciate ligament laxity. Intimal thickness was significantly lower than control in the normal and sulfasalazine-treated groups (p = 0.010 and 0.025, respectively). Contractile activity in the cells from controls was significantly increased versus normal (p = 0.001). Sulfasalazine and ß-aminopropionitrile significantly inhibited this effect (p = 0.005 and 0.0006, respectively). α-SMA expression was significantly higher in control versus normal (p = 0.0021) and versus sulfasalazine (p = 0.0007). These findings support the conclusion that sulfasalazine reduced stiffness by clearing myofibroblasts from fibrotic joints. Statement of clinical significance: The results provide proof-of-concept that established joint stiffness can be resolved non-surgically. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:629-638, 2020.


Assuntos
Artropatias/tratamento farmacológico , Artropatias/patologia , Sulfassalazina/farmacologia , Aminopropionitrilo/química , Animais , Colágeno/química , Contratura/patologia , Modelos Animais de Doenças , Fibrose , Hidroxiprolina/química , Cápsula Articular/patologia , Masculino , Contração Muscular , Miofibroblastos/fisiologia , Coelhos , Estresse Mecânico
13.
Iowa Orthop J ; 39(2): 1-8, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32577101

RESUMO

Background: Histology-based methods are commonly used in osteoarthritis (OA) research because they provide detailed information about cartilage health at the cellular and tissue level. Computer-based cartilage scoring systems have previously been developed using standard image analysis techniques to give more objective and reliable evaluations of OA severity. The goal of this work was to develop a deep learning-based method to segment chondrocytes from histological images of cartilage and validate the resulting method via comparison with human segmentation. Methods: The U-Net approach was adapted for the task of chondrocyte segmentation. A training dataset consisting of 235 images and a validation set consisting of 25 images in which individual chondrocytes had been manually segmented, were used for training the U-Net. Chondrocyte count, detection accuracy, and boundary segmentation of the trained U-Net was evaluated by comparing its results with those of human observers. Results: The U-Net chondrocyte counts were not significantly different (p = 0.361 in a paired t-test) than the algorithm trainer counts (Pearson correlation coefficient = 0.92). The five expert observers had good agreement on chondrocyte counts (intraclass correlation coefficient = 0.868), however the resulting U-Net counted a significantly fewer chondrocytes than the average of those expert observers (p < 0.001 in a paired t-test). Chondrocytes were accurately detected by the U-Net (F1 scores = 0.86, 0.90, with respect to the selected expert observer and algorithm trainer). Segmentation accuracy was also high (IOU = 0.828) relative to the algorithm trainer. Conclusions: This work developed a method for chondrocyte segmentation from histological images of arthritic cartilage using a deep learning approach. The resulting method detected chondrocytes and delineated them with high accuracy. The method will continue to be improved through expansion to detect more complex cellular features representative of OA such as cell cloning. Clinical Relevance: The imaging tool developed in this work can be integrated into an automated cartilage health scoring system and helps provide a robust, objective and reliable assessment of OA severity in cartilage.


Assuntos
Cartilagem Articular/citologia , Condrócitos/citologia , Aprendizado Profundo , Osteoartrite/patologia , Humanos , Processamento de Imagem Assistida por Computador , Reconhecimento Automatizado de Padrão
14.
Sci Transl Med ; 10(427)2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29437147

RESUMO

We tested whether inhibiting mechanically responsive articular chondrocyte mitochondria after severe traumatic injury and preventing oxidative damage represent a viable paradigm for posttraumatic osteoarthritis (PTOA) prevention. We used a porcine hock intra-articular fracture (IAF) model well suited to human-like surgical techniques and with excellent anatomic similarities to human ankles. After IAF, amobarbital or N-acetylcysteine (NAC) was injected to inhibit chondrocyte electron transport or downstream oxidative stress, respectively. Effects were confirmed via spectrophotometric enzyme assays or glutathione/glutathione disulfide assays and immunohistochemical measures of oxidative stress. Amobarbital or NAC delivered after IAF provided substantial protection against PTOA at 6 months, including maintenance of proteoglycan content, decreased histological disease scores, and normalized chondrocyte metabolic function. These data support the therapeutic potential of targeting chondrocyte metabolism after injury and suggest a strong role for mitochondria in mediating PTOA.


Assuntos
Fraturas Intra-Articulares/metabolismo , Fraturas Intra-Articulares/prevenção & controle , Mitocôndrias/metabolismo , Animais , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Feminino , Masculino , Osteoartrite/metabolismo , Osteoartrite/prevenção & controle , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Suínos
15.
Antioxidants (Basel) ; 6(4)2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29189731

RESUMO

Post-traumatic osteoarthritis can develop as a result of the initial mechanical impact causing the injury and also as a result of chronic changes in mechanical loading of the joint. Aberrant mechanical loading initiates excessive production of reactive oxygen species, oxidative damage, and stress that appears to damage mitochondria in the surviving chondrocytes. To probe the benefits of increasing superoxide removal with small molecular weight superoxide dismutase mimetics under severe loads, we applied both impact and overload injury scenarios to bovine osteochondral explants using characterized mechanical platforms with and without GC4403, MnTE-2-PyP, and MnTnBuOE-2-PyP. In impact scenarios, each of these mimetics provides some dose-dependent protection from cell death and loss of mitochondrial content while in repeated overloading scenarios only MnTnBuOE-2-PyP provided a clear benefit to chondrocytes. These results support the hypothesis that superoxide is generated in excess after impact injuries and suggest that superoxide production within the lipid compartment may be a critical mediator of responses to chronic overload. This is an important nuance distinguishing roles of superoxide, and thus superoxide dismutases, in mediating damage to cellular machinery in hyper-acute impact scenarios compared to chronic scenarios.

16.
J Orthop Res ; 35(9): 1966-1972, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27813166

RESUMO

Serious meniscus injuries seldom heal and increase the risk for knee osteoarthritis; thus, there is a need to develop new reparative therapies. In that regard, stimulating tissue regeneration by autologous stem/progenitor cells has emerged as a promising new strategy. We showed previously that migratory chondrogenic progenitor cells (CPCs) were recruited to injured cartilage, where they showed a capability in situ tissue repair. Here, we tested the hypothesis that the meniscus contains a similar population of regenerative cells. Explant studies revealed that migrating cells were mainly confined to the red zone in normal menisci: However, these cells were capable of repopulating defects made in the white zone. In vivo, migrating cell numbers increased dramatically in damaged meniscus. Relative to non-migrating meniscus cells, migrating cells were more clonogenic, overexpressed progenitor cell markers, and included a larger side population. Gene expression profiling showed that the migrating population was more similar to CPCs than other meniscus cells. Finally, migrating cells equaled CPCs in chondrogenic potential, indicating a capacity for repair of the cartilaginous white zone of the meniscus. These findings demonstrate that, much as in articular cartilage, injuries to the meniscus mobilize an intrinsic progenitor cell population with strong reparative potential. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1966-1972, 2017.


Assuntos
Células-Tronco Adultas/fisiologia , Meniscos Tibiais/citologia , Regeneração , Animais , Bovinos , Movimento Celular , Cabras , Meniscos Tibiais/fisiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-27843894

RESUMO

Post-traumatic osteoarthritis affects almost 20% of the adult US population. An injurious impact applies a significant amount of physical stress on articular cartilage and can initiate a cascade of biochemical reactions that can lead to the development of osteoarthritis. In our effort to understand the underlying biochemical mechanisms of this debilitating disease, we have constructed a multiscale mathematical model of the process with three components: cellular, chemical, and mechanical. The cellular component describes the different chondrocyte states according to the chemicals these cells release. The chemical component models the change in concentrations of those chemicals. The mechanical component contains a simulation of a blunt impact applied onto a cartilage explant and the resulting strains that initiate the biochemical processes. The scales are modeled through a system of partial-differential equations and solved numerically. The results of the model qualitatively capture the results of laboratory experiments of drop-tower impacts on cartilage explants. The model creates a framework for incorporating explicit mechanics, simulated by finite element analysis, into a theoretical biology framework. The effort is a step toward a complete virtual platform for modeling the development of post-traumatic osteoarthritis, which will be used to inform biomedical researchers on possible non-invasive strategies for mitigating the disease.

18.
Arthritis Rheumatol ; 68(3): 662-71, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26473613

RESUMO

OBJECTIVE: To determine whether repeatedly overloading healthy cartilage disrupts mitochondrial function in a manner similar to that associated with osteoarthritis (OA) pathogenesis. METHODS: We exposed normal articular cartilage on bovine osteochondral explants to 1 day or 7 consecutive days of cyclic axial compression (0.25 MPa or 1.0 MPa at 0.5 Hz for 3 hours) and evaluated the effects on chondrocyte viability, ATP concentration, reactive oxygen species (ROS) production, indicators of oxidative stress, respiration, and mitochondrial membrane potential. RESULTS: Neither 0.25 MPa nor 1.0 MPa of cyclic compression caused extensive chondrocyte death, macroscopic tissue damage, or overt changes in stress-strain behavior. After 1 day of loading, differences in respiratory activities between the 0.25 MPa and 1.0 MPa groups were minimal; however, after 7 days of loading, respiratory activity and ATP levels were suppressed in the 1.0 MPa group relative to the 0.25 MPa group, an effect prevented by pretreatment with 10 mM N-acetylcysteine. These changes were accompanied by increased proton leakage and decreased mitochondrial membrane potential, as well as by increased ROS formation, as indicated by dihydroethidium staining and glutathione oxidation. CONCLUSION: Repeated overloading leads to chondrocyte oxidant-dependent mitochondrial dysfunction. This mitochondrial dysfunction may contribute to destabilization of cartilage during various stages of OA in distinct ways by disrupting chondrocyte anabolic responses to mechanical stimuli.


Assuntos
Cartilagem Articular/fisiopatologia , Respiração Celular/fisiologia , Condrócitos/fisiologia , Trifosfato de Adenosina/análise , Animais , Bovinos , Sobrevivência Celular/fisiologia , Células Cultivadas , Condrócitos/metabolismo , Etídio/análogos & derivados , Etídio/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Técnicas In Vitro , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/fisiologia , Osteoartrite/etiologia , Oxirredução , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
19.
20.
Artigo em Inglês | MEDLINE | ID: mdl-25806365

RESUMO

Traumatic injuries of articular cartilage result in the formation of a cartilage lesion and contribute to cartilage degeneration and the risk of osteoarthritis (OA). A better understanding of the framework for the formation of a cartilage lesion formation would be helpful in therapy development. Toward this end, we present an age and space-structured model of articular cartilage lesion formation after a single blunt impact. This model modifies the reaction-diffusion-delay models in Graham et al. (2012) (single impact) and Wang et al. (2014) (cyclic loading), focusing on the "balancing act" between pro- and anti-inflammatory cytokines. Age structure is introduced to replace the delay terms for cell transitions used in these earlier models; we find age structured models to be more flexible in representing the underlying biological system and more tractable computationally. Numerical results show a successful capture of chondrocyte behavior and chemical activities associated with the cartilage lesion after the initial injury; experimental validation of our computational results is presented. We anticipate that our in silico model of cartilage damage from a single blunt impact can be used to provide information that may not be easily obtained through in in vivo or in vitro studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA