Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS One ; 19(7): e0306224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39052561

RESUMO

The development and use of virtual laboratories to augment traditional in-person skills training continues to grow. Virtual labs have been implemented in a number of diverse educational settings, which have many purported benefits including their adaptability, accessibility, and repeatability. However, few studies have evaluated the impact of virtual laboratories outside of academic achievement and skills competencies, especially in biotechnology. In this study, an interdisciplinary team of content experts, video game researchers, instructional designers, and assessment experts developed a 3D immersive simulation designed to teach novice scientists the technical skills necessary to perform sterile mammalian cell culture technique. Unique to the simulation development process is the recreation of an immersive experience through the capture of details in the real-world lab where participants have the freedom of choice in their actions, while receiving immediate feedback on their technical skills as well as procedural execution. However, unlike an in-person laboratory course, students are able to iterate and practice their skills outside of class time and learn from their mistakes. Over the course of two semesters, we used a mixed-methods study design to evaluate student attitudes towards the simulation and their science motivational beliefs. Students' self-efficacy and science identity were assessed after engaging with the simulation prior to the physical laboratory. Our results show that students' science identity remained unchanged while their science self-efficacy increased. Furthermore, students had positive perceptions of the benefits of the virtual simulation. These data suggest that the virtual cell culture simulation can be a useful pedagogical training tool to support students' motivational beliefs that is both accessible and easy to implement.


Assuntos
Biotecnologia , Motivação , Estudantes , Humanos , Estudantes/psicologia , Biotecnologia/educação , Biotecnologia/métodos , Masculino , Feminino , Realidade Virtual , Adulto Jovem , Adulto , Simulação por Computador
2.
Front Toxicol ; 5: 1134783, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082740

RESUMO

Introduction: Analysis of streamlined computational models used to predict androgen disrupting chemicals revealed that assays measuring androgen receptor (AR) cofactor recruitment/dimerization were particularly indispensable to high predictivity, especially for AR antagonists. As the original dimerization assays used to develop the minimal assay models are no longer available, new assays must be established and evaluated as suitable alternatives to assess chemicals beyond the original 1,800+ supported by the current data. Here we present the AR2 assay, which is a stable, cell-based method that uses an enzyme complementation approach. Methods: Bipartite domains of the NanoLuc luciferase enzyme were fused to the human AR to quantitatively measure ligand-dependent AR homodimerization. 128 chemicals with known endocrine activity profiles including 43 AR reference chemicals were screened in agonist and antagonist modes and compared to the legacy assays. Test chemicals were rescreened in both modes using a retrofit method to incorporate robust cytochrome P450 (CYP) metabolism to assess CYP-mediated shifts in bioactivity. Results: The AR2 assay is amenable to high-throughput screening with excellent robust Z'-factors (rZ') for both agonist (0.94) and antagonist (0.85) modes. The AR2 assay successfully classified known agonists (balanced accuracy = 0.92) and antagonists (balanced accuracy = 0.79-0.88) as well as or better than the legacy assays with equal or higher estimated potencies. The subsequent reevaluation of the 128 chemicals tested in the presence of individual human CYP enzymes changed the activity calls for five compounds and shifted the estimated potencies for several others. Discussion: This study shows the AR2 assay is well suited to replace the previous AR dimerization assays in a revised computational model to predict AR bioactivity for parent chemicals and their metabolites.

3.
NPJ Digit Med ; 5(1): 17, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149754

RESUMO

COVID-19 remains a global threat in the face of emerging SARS-CoV-2 variants and gaps in vaccine administration and availability. In this study, we analyze a data-driven COVID-19 testing program implemented at a mid-sized university, which utilized two simple, diverse, and easily interpretable machine learning models to predict which students were at elevated risk and should be tested. The program produced a positivity rate of 0.53% (95% CI 0.34-0.77%) from 20,862 tests, with 1.49% (95% CI 1.15-1.89%) of students testing positive within five days of the initial test-a significant increase from the general surveillance baseline, which produced a positivity rate of 0.37% (95% CI 0.28-0.47%) with 0.67% (95% CI 0.55-0.81%) testing positive within five days. Close contacts who were predicted by the data-driven models were tested much more quickly on average (0.94 days from reported exposure; 95% CI 0.78-1.11) than those who were manually contact traced (1.92 days; 95% CI 1.81-2.02). We further discuss how other universities, business, and organizations could adopt similar strategies to help quickly identify positive cases and reduce community transmission.

4.
Dev Biol ; 482: 114-123, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34932993

RESUMO

Glia are a diverse and essential cell type in the vertebrate nervous system. Transgenic tools and fluorescent reporter lines are critical resources to investigate how glial subtypes develop and function. However, despite the many lines available in zebrafish, the community still lacks the ability to label all unique stages of glial development and specific subpopulations of cells. To address this issue, we screened zebrafish gene and enhancer trap lines to find a novel reporter for peripheral glial subtypes. From these, we generated the gSAIzGFFD37A transgenic line that expresses GFP in neural crest cells and central and peripheral glia. We found that the gene trap construct is located within an intron of erbb3b, a gene essential for glial development. Additionally, we confirmed that GFP+ â€‹cells express erbb3b along with sox10, a known glial marker. From our screen, we have identified the gSAIzGFFD37A line as a novel and powerful tool for studying glia in the developing zebrafish, as well as a new resource to manipulate erbb3b+ â€‹cells.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Crista Neural/metabolismo , Neurogênese/fisiologia , Neuroglia/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados/genética , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Fatores de Transcrição SOXE/biossíntese , Proteínas de Peixe-Zebra/biossíntese
5.
JCI Insight ; 6(24)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34762601

RESUMO

Inhibitors of the renin-angiotensin system (RAS) are widely used to treat hypertension. Using mice harboring fluorescent cell lineage tracers, single-cell RNA-Seq, and long-term inhibition of RAS in both mice and humans, we found that deletion of renin or inhibition of the RAS leads to concentric thickening of the intrarenal arteries and arterioles. This severe disease was caused by the multiclonal expansion and transformation of renin cells from a classical endocrine phenotype to a matrix-secretory phenotype: the cells surrounded the vessel walls and induced the accumulation of adjacent smooth muscle cells and extracellular matrix, resulting in blood flow obstruction, focal ischemia, and fibrosis. Ablation of the renin cells via conditional deletion of ß1 integrin prevented arteriolar hypertrophy, indicating that renin cells are responsible for vascular disease. Given these findings, prospective morphological studies in humans are necessary to determine the extent of renal vascular damage caused by the widespread use of inhibitors of the RAS.


Assuntos
Hipertensão/fisiopatologia , Rim/irrigação sanguínea , Sistema Renina-Angiotensina/fisiologia , Animais , Humanos , Camundongos
6.
New Phytol ; 232(2): 868-879, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34318484

RESUMO

Effective insect pollination requires appropriate responses to internal and external environmental cues in both the plant and the pollinator. Helianthus annuus, a highly outcrossing species, is marked for its uniform eastward orientation of mature pseudanthia, or capitula. Here we investigate how this orientation affects floral microclimate and the consequent effects on plant and pollinator interactions and reproductive fitness. We artificially manipulated sunflower capitulum orientation and temperature in both field and controlled conditions and assessed flower physiology, pollinator visits, seed traits and siring success. East-facing capitula were found to have earlier style elongation, pollen presentation and pollinator visits compared with capitula manipulated to face west. East-facing capitula also sired more offspring than west-facing capitula and under some conditions produced heavier and better-filled seeds. Local ambient temperature change on the capitulum was found to be a key factor regulating the timing of style elongation, pollen emergence and pollinator visits. These results indicate that eastward capitulum orientation helps to control daily rhythms in floral temperature, with direct consequences on the timing of style elongation and pollen emergence, pollinator visitation, and plant fitness.


Assuntos
Helianthus , Polinização , Flores , Pólen , Temperatura
7.
J Neurosci ; 41(25): 5353-5371, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-33975920

RESUMO

Oligodendrocyte progenitor cells (OPCs) are specified from discrete precursor populations during gliogenesis and migrate extensively from their origins, ultimately distributing throughout the brain and spinal cord during early development. Subsequently, a subset of OPCs differentiates into mature oligodendrocytes, which myelinate axons. This process is necessary for efficient neuronal signaling and organism survival. Previous studies have identified several factors that influence OPC development, including excitatory glutamatergic synapses that form between neurons and OPCs during myelination. However, little is known about how glutamate signaling affects OPC migration before myelination. In this study, we use in vivo, time-lapse imaging in zebrafish in conjunction with genetic and pharmacological perturbation to investigate OPC migration and myelination when the GluR4A ionotropic glutamate receptor subunit is disrupted. In our studies, we observed that gria4a mutant embryos and larvae displayed abnormal OPC migration and altered dorsoventral distribution in the spinal cord. Genetic mosaic analysis confirmed that these effects were cell-autonomous, and we identified that voltage-gated calcium channels were downstream of glutamate receptor signaling in OPCs and could rescue the migration and myelination defects we observed when glutamate signaling was perturbed. These results offer new insights into the complex system of neuron-OPC interactions and reveal a cell-autonomous role for glutamatergic signaling in OPCs during neural development.SIGNIFICANCE STATEMENT The migration of oligodendrocyte progenitor cells (OPCs) is an essential process during development that leads to uniform oligodendrocyte distribution and sufficient myelination for central nervous system function. Here, we demonstrate that the AMPA receptor (AMPAR) subunit GluR4A is an important driver of OPC migration and myelination in vivo and that activated voltage-gated calcium channels are downstream of glutamate receptor signaling in mediating this migration.


Assuntos
Ácido Glutâmico/metabolismo , Neurogênese/fisiologia , Células Precursoras de Oligodendrócitos/metabolismo , Receptores de AMPA/metabolismo , Medula Espinal/embriologia , Animais , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Transdução de Sinais/fisiologia , Peixe-Zebra
8.
JPEN J Parenter Enteral Nutr ; 44(8): 1461-1467, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32010992

RESUMO

BACKGROUND: Vasoactive and inotropic support (VIS) may predispose cardiac surgery patients to ischemic gut complications (IGCx). The purpose of this study was to describe the effect of VIS on the manner in which we deliver tube feeds (TFs) and determine its relationship with IGCx in cardiac surgery patients. METHODS: We reviewed cardiac surgery patients at a single institution and examined the effect of VIS (none, low, medium, high) on TF administration and evaluated IGCx. RESULTS: Of 3088 cardiac surgery patients, 249 (8%) required TFs, comprising 2151 total TF-days. Increasing VIS was associated with decreased amounts of TF administered per day (P = .001) and an increase in time that TF was held per day (P < .001). High VIS was associated with less intact, more semi-elemental/elemental formula use (P < .001) and increased use of gastric route (P < .001). Of all cardiac surgery patients, 11 of 3125 suffered IGCx (0.4%), with a mortality of 73%. Of the 3 receiving TF, 2 IGCx were focal and consistent with acute embolus, whereas one was diffuse, on high VIS and an intra-aortic balloon pump. Of the 8 IGCx in the patients not receiving TF, 5 were focal, whereas 3 were diffuse and not embolic (P = .21). CONCLUSIONS: Despite 32% of TF-days on moderate to high VIS, non-embolic IGCx were not increased compared with patients not receiving TF. As delivered at this institution, TF in even those requiring moderate to high inotropic and pressor support were not associated with an increase in attributable IGCx.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Fármacos Cardiovasculares , Microbioma Gastrointestinal , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Nutrição Enteral , Humanos
9.
J Clin Invest ; 128(11): 4787-4803, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30130256

RESUMO

Renin cells are crucial for survival - they control fluid-electrolyte and blood pressure homeostasis, vascular development, regeneration, and oxygen delivery to tissues. During embryonic development, renin cells are progenitors for multiple cell types that retain the memory of the renin phenotype. When there is a threat to survival, those descendants are transformed and reenact the renin phenotype to restore homeostasis. We tested the hypothesis that the molecular memory of the renin phenotype resides in unique regions and states of these cells' chromatin. Using renin cells at various stages of stimulation, we identified regions in the genome where the chromatin is open for transcription, mapped histone modifications characteristic of active enhancers such as H3K27ac, and tracked deposition of transcriptional activators such as Med1, whose deletion results in ablation of renin expression and low blood pressure. Using the rank ordering of super-enhancers, epigenetic rewriting, and enhancer deletion analysis, we found that renin cells harbor a unique set of super-enhancers that determine their identity. The most prominent renin super-enhancer may act as a chromatin sensor of signals that convey the physiologic status of the organism, and is responsible for the transformation of renin cell descendants to the renin phenotype, a fundamental process to ensure homeostasis.


Assuntos
Epigênese Genética , Código das Histonas , Histonas/metabolismo , Homeostase , Subunidade 1 do Complexo Mediador/metabolismo , Renina/biossíntese , Células-Tronco/metabolismo , Animais , Histonas/genética , Subunidade 1 do Complexo Mediador/genética , Camundongos , Camundongos Transgênicos , Renina/genética , Células-Tronco/citologia
10.
Science ; 353(6299): 587-90, 2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27493185

RESUMO

Young sunflower plants track the Sun from east to west during the day and then reorient during the night to face east in anticipation of dawn. In contrast, mature plants cease movement with their flower heads facing east. We show that circadian regulation of directional growth pathways accounts for both phenomena and leads to increased vegetative biomass and enhanced pollinator visits to flowers. Solar tracking movements are driven by antiphasic patterns of elongation on the east and west sides of the stem. Genes implicated in control of phototropic growth, but not clock genes, are differentially expressed on the opposite sides of solar tracking stems. Thus, interactions between environmental response pathways and the internal circadian oscillator coordinate physiological processes with predictable changes in the environment to influence growth and reproduction.


Assuntos
Ritmo Circadiano/fisiologia , Flores/fisiologia , Helianthus/crescimento & desenvolvimento , Fototropismo/fisiologia , Polinização , Animais , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Helianthus/genética , Fototropismo/genética , Luz Solar
11.
Bone Rep ; 3: 20-31, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26636129

RESUMO

OBJECTIVE: The objective of this study was to investigate the effect of mechanical strain by mapping physicochemical properties at periodontal ligament (PDL)-bone and PDL-cementum attachment sites and within the tissues per se. DESIGN: Accentuated mechanical strain was induced by applying a unidirectional force of 0.06N for 14 days on molars in a rat model. The associated changes in functional space between tooth and bone, mineral formation and resorbing events at the PDL-bone and PDL-cementum attachment sites were identified by using micro-X-ray computed tomography (micro-XCT), atomic force microscopy (AFM), dynamic histomorphometry, Raman microspectroscopy, AFM-based nanoindentation technique, and were correlated with histochemical stains specific to low and high molecular weight GAGs, including biglycan, and osteoclast distribution through tartrate-resistant acid phosphatase (TRAP) staining. RESULTS: Unique chemical and mechanical qualities including heterogenous bony fingers with hygroscopic Sharpey's fibers contributing to a higher organic (amide III - 1240 cm-1) to inorganic (phosphate - 960 cm-1) ratio, with lower average elastic modulus of 8 GPa versus 12 GPa in unadapted regions were identified. Furthermore, an increased presence of elemental Zn in cement lines and mineralizing fronts of PDL-bone was observed. Adapted regions containing bony fingers exhibited woven bone-like architecture and these regions rich in biglycan (BGN) and bone sialoprotein (BSP) also contained high-molecular weight polysaccharides predominantly at the site of polarized bone growth. CONCLUSIONS: From a fundamental science perspective the shift in local properties due to strain amplification at the soft-hard tissue attachment sites is governed by semiautonomous cellular events at the PDL-bone and PDL-cementum sites. Over time, these strain-mediated events can alter the physicochemical properties of tissues per se, and consequently the overall biomechanics of the bone-PDL-tooth complex. From a clinical perspective, the shifts in magnitude and duration of forces on the periodontal ligament can prompt a shift in physiologic mineral apposition in cementum and alveolar bone albeit of an adapted quality owing to the rapid mechanical translation of the tooth.

12.
Plant Sci ; 224: 20-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24908502

RESUMO

Solar tracking in the common sunflower, Helianthus annuus, is a dramatic example of a diurnal rhythm in plants. During the day, the shoot apex continuously reorients, following the sun's relative position so that the developing heads track from east to west. At night, the reverse happens, and the heads return and face east in anticipation of dawn. This daily cycle dampens and eventually stops at anthesis, after which the sunflower head maintains an easterly orientation. Although shoot apical heliotropism has long been the subject of physiological studies in sunflower, the underlying developmental, cellular, and molecular mechanisms that drive the directional growth and curvature of the stem in response to extrinsic and perhaps intrinsic cues are not known. Furthermore, the ecological functions of solar tracking and the easterly orientation of mature heads have been the subject of significant but unresolved speculation. In this review, we discuss the current state of knowledge about this complex, dynamic trait. Candidate mechanisms that may contribute to daytime and nighttime movement are highlighted, including light signaling, hormonal action, and circadian regulation of growth pathways. The merits of the diverse hypotheses advanced to explain the adaptive significance of heliotropism in sunflower are also considered.


Assuntos
Ritmo Circadiano , Helianthus/crescimento & desenvolvimento , Inflorescência , Fototropismo , Brotos de Planta/crescimento & desenvolvimento , Luz Solar
13.
AANA J ; 78(4): 270-4, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20879626

RESUMO

Healthcare providers using social media must remain mindful of professional boundaries and patients' privacy rights. Facebook and other online postings must comply with the Health Insurance Portability and Accountability Act of 1996 (HIPAA), applicable facility policy, state law, and AANA's Code of Ethics.


Assuntos
Blogging/legislação & jurisprudência , Meios de Comunicação/legislação & jurisprudência , Confidencialidade/legislação & jurisprudência , Internet/legislação & jurisprudência , Enfermeiros Anestesistas/legislação & jurisprudência , Blogging/ética , Meios de Comunicação/ética , Confidencialidade/ética , Humanos , Internet/ética , Enfermeiros Anestesistas/ética , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA