Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 47(5): 2177-88, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23398602

RESUMO

Natural and synthetic organic contaminants in municipal wastewater treatment plant (WWTP) effluents can cause ecosystem impacts, raising concerns about their persistence in receiving streams. In this study, Lagrangian sampling, in which the same approximate parcel of water is tracked as it moves downstream, was conducted at Boulder Creek, Colorado and Fourmile Creek, Iowa to determine in-stream transport and attenuation of organic contaminants discharged from two secondary WWTPs. Similar stream reaches were evaluated, and samples were collected at multiple sites during summer and spring hydrologic conditions. Travel times to the most downstream (7.4 km) site in Boulder Creek were 6.2 h during the summer and 9.3 h during the spring, and to the Fourmile Creek 8.4 km downstream site times were 18 and 8.8 h, respectively. Discharge was measured at each site, and integrated composite samples were collected and analyzed for >200 organic contaminants including metal complexing agents, nonionic surfactant degradates, personal care products, pharmaceuticals, steroidal hormones, and pesticides. The highest concentration (>100 µg L(-1)) compounds detected in both WWTP effluents were ethylenediaminetetraacetic acid and 4-nonylphenolethoxycarboxylate oligomers, both of which persisted for at least 7 km downstream from the WWTPs. Concentrations of pharmaceuticals were lower (<1 µg L(-1)), and several compounds, including carbamazepine and sulfamethoxazole, were detected throughout the study reaches. After accounting for in-stream dilution, a complex mixture of contaminants showed little attenuation and was persistent in the receiving streams at concentrations with potential ecosystem implications.


Assuntos
Monitoramento Ambiental , Compostos Orgânicos/análise , Rios/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Colorado , Ecossistema , Iowa , Eliminação de Resíduos Líquidos
2.
Sci Total Environ ; 409(1): 100-11, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20970168

RESUMO

Concentrations of endocrine disrupting chemicals and endocrine disruption in fish were determined in 11 lakes across Minnesota that represent a range of trophic conditions and land uses (urban, agricultural, residential, and forested) and in which wastewater treatment plant discharges were absent. Water, sediment, and passive polar organic integrative samplers (POCIS) were analyzed for steroidal hormones, alkylphenols, bisphenol A, and other organic and inorganic molecular tracers to evaluate potential non-point source inputs into the lakes. Resident fish from the lakes were collected, and caged male fathead minnows were deployed to evaluate endocrine disruption, as indicated by the biological endpoints of plasma vitellogenin and gonadal histology. Endocrine disrupting chemicals, including bisphenol A, 17ß-estradiol, estrone, and 4-nonylphenol were detected in 90% of the lakes at part per trillion concentrations. Endocrine disruption was observed in caged fathead minnows and resident fish in 90% of the lakes. The widespread but variable occurrence of anthropogenic chemicals in the lakes and endocrine disruption in fish indicates that potential sources are diverse, not limited to wastewater treatment plant discharges, and not entirely predictable based on trophic status and land use.


Assuntos
Disruptores Endócrinos/análise , Sistema Endócrino/efeitos dos fármacos , Monitoramento Ambiental , Água Doce/química , Poluentes Químicos da Água/análise , Animais , Compostos Benzidrílicos , Disruptores Endócrinos/toxicidade , Estradiol/análise , Estradiol/toxicidade , Estrona/análise , Estrona/toxicidade , Peixes/metabolismo , Sedimentos Geológicos/química , Minnesota , Fenóis/análise , Fenóis/toxicidade , Esteroides/análise , Esteroides/toxicidade , Vitelogeninas/metabolismo , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA