Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 33(8): e17315, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501394

RESUMO

Natural hybridisation is now recognised as pervasive in its occurrence across the Tree of Life. Resurgent interest in natural hybridisation fuelled by developments in genomics has led to an improved understanding of the genetic factors that promote or prevent species cross-mating. Despite this body of work overturning many widely held assumptions about the genetic barriers to hybridisation, it is still widely thought that ploidy differences between species will be an absolute barrier to hybridisation and introgression. Here, we revisit this assumption, reviewing findings from surveys of polyploidy and hybridisation in the wild. In a case study in the British flora, 203 hybrids representing 35% of hybrids with suitable data have formed via cross-ploidy matings, while a wider literature search revealed 59 studies (56 in plants and 3 in animals) in which cross-ploidy hybridisation has been confirmed with genetic data. These results show cross-ploidy hybridisation is readily overlooked, and potentially common in some groups. General findings from these studies include strong directionality of hybridisation, with introgression usually towards the higher ploidy parent, and cross-ploidy hybridisation being more likely to involve allopolyploids than autopolyploids. Evidence for adaptive introgression across a ploidy barrier and cases of cross-ploidy hybrid speciation shows the potential for important evolutionary outcomes.


Assuntos
Evolução Biológica , Hibridização Genética , Animais , Poliploidia , Plantas
2.
Proc Natl Acad Sci U S A ; 120(16): e2220261120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040419

RESUMO

Natural hybridization can have a profound evolutionary impact, with consequences ranging from the extinction of rare taxa to the origin of new species. Natural hybridization is particularly common in plants; however, our understanding of the general factors that promote or prevent hybridization is hampered by the highly variable outcomes in different lineages. Here, we quantify the influence of different predictors on hybrid formation across species from an entire flora. We combine estimates of hybridization with ecological attributes and a new species-level phylogeny for over 1,100 UK flowering plant species. Our results show that genetic factors, particularly parental genetic distance, as well as phylogenetic position and ploidy, are key determinants of hybrid formation, whereas many other factors such as range overlap and genus size explain much less variation in hybrid formation. Overall, intrinsic genetic factors shape the evolutionary and ecological consequences of natural hybridization across species in a flora.


Assuntos
Evolução Biológica , Ploidias , Filogenia , Hibridização de Ácido Nucleico , Hibridização Genética
3.
Am J Bot ; 110(1): e16100, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36371731

RESUMO

PREMISE: Strong postzygotic reproductive isolating barriers are usually expected to limit the extent of natural hybridization between species with contrasting ploidy. However, genomic sequencing has revealed previously overlooked examples of natural cross-ploidy hybridization in some flowering plant genera, suggesting that the phenomenon may be more common than once thought. We investigated potential cross-ploidy hybridization in British eyebrights (Euphrasia, Orobanchaceae), a group from which 13 putative cross-ploidy hybrid combinations have been reported based on morphology. METHODS: We analyzed a contact zone between diploid Euphrasia rostkoviana and tetraploid E. arctica in Wales. We sequenced part of the internal transcribed spacer (ITS) of nuclear ribosomal DNA and used genotyping by sequencing (GBS) to look for evidence of cross-ploidy hybridization and introgression. RESULTS: Common variant sites in the ITS region were fixed between diploids and tetraploids, indicating a strong barrier to hybridization. Clustering analyses of 356 single-nucleotide polymorphisms (SNPs) generated using GBS clearly separated samples by ploidy and revealed strong genetic structure (FST = 0.44). However, the FST distribution across all SNPs was bimodal, indicating potential differential selection on loci between diploids and tetraploids. Demographic inference suggested potential gene flow, limited to around one or fewer migrants per generation. CONCLUSIONS: Our results suggest that recent cross-ploidy hybridization is rare or absent in a site of secondary contact in Euphrasia. While a strong ploidy barrier prevents hybridization over ecological timescales, such hybrids may form in stable populations over evolutionary timescales, potentially allowing cross-ploidy introgression to take place.


Assuntos
Diploide , Euphrasia , Tetraploidia , Ploidias , Hibridização Genética
4.
Sci Data ; 9(1): 1, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013360

RESUMO

The vascular flora of Britain and Ireland is among the most extensively studied in the world, but the current knowledge base is fragmentary, with taxonomic, ecological and genetic information scattered across different resources. Here we present the first comprehensive data repository of native and alien species optimized for fast and easy online access for ecological, evolutionary and conservation analyses. The inventory is based on the most recent reference flora of Britain and Ireland, with taxon names linked to unique Kew taxon identifiers and DNA barcode data. Our data resource for 3,227 species and 26 traits includes existing and unpublished genome sizes, chromosome numbers and life strategy and life-form assessments, along with existing data on functional traits, species distribution metrics, hybrid propensity, associated biomes, realized niche description, native status and geographic origin of alien species. This resource will facilitate both fundamental and applied research and enhance our understanding of the flora's composition and temporal changes to inform conservation efforts in the face of ongoing climate change and biodiversity loss.


Assuntos
Biodiversidade , Traqueófitas/classificação , Bases de Dados como Assunto , Ecossistema , Espécies Introduzidas , Irlanda , Reino Unido
5.
New Phytol ; 232(5): 2165-2174, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34555197

RESUMO

Generalist hemiparasites may attach to many different host species and experience complex parasite-host interactions. How these parasite-host interactions impact on the fitness of hemiparasitic plants remain largely unknown. We used experimentally tractable eyebrights (Euphrasia, Orobanchaceae) to understand parasite-host species interactions affecting the performance of a generalist hemiparasitic plant. Common garden experiments were carried out measuring Euphrasia performance across 45 diverse hosts and in different parasite-host combinations. We show that variation in hemiparasite performance can be attributed mainly to host species and host phylogenetic relationships (λ = 0.82; 0.17-1.00 CI). When variation in performance is considered temporally, annual host species cause earlier flowering, and lead to poorer performance late in the season. While Euphrasia species typically perform similarly on a given host species, some eyebrights show more specialized parasite-host species interactions. Our results show that generalist hemiparasites only benefit from attaching to a limited, but phylogenetically divergent, subset of hosts. The conserved responses of divergent Euphrasia species suggest hemiparasite performance is affected by common host attributes. However, evidence for more complex parasite-host species interactions show that a generalist hemiparasite can potentially respond to individual host selection pressures and may adapt to local host communities.


Assuntos
Euphrasia , Orobanchaceae , Parasitos , Animais , Interações Hospedeiro-Parasita , Filogenia
6.
Ann Bot ; 128(5): 639-651, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34318876

RESUMO

BACKGROUND AND AIMS: Genome size varies considerably across the diversity of plant life. Although genome size is, by definition, affected by genetic presence/absence variants, which are ubiquitous in population sequencing studies, genome size is often treated as an intrinsic property of a species. Here, we studied intra- and interspecific genome size variation in taxonomically complex British eyebrights (Euphrasia, Orobanchaceae). Our aim is to document genome size diversity and investigate underlying evolutionary processes shaping variation between individuals, populations and species. METHODS: We generated genome size data for 192 individuals of diploid and tetraploid Euphrasia and analysed genome size variation in relation to ploidy, taxonomy, population affiliation and geography. We further compared the genomic repeat content of 30 samples. KEY RESULTS: We found considerable intraspecific genome size variation, and observed isolation-by-distance for genome size in outcrossing diploids. Tetraploid Euphrasia showed contrasting patterns, with genome size increasing with latitude in outcrossing Euphrasia arctica, but with little genome size variation in the highly selfing Euphrasia micrantha. Interspecific differences in genome size and the genomic proportions of repeat sequences were small. CONCLUSIONS: We show the utility of treating genome size as the outcome of polygenic variation. Like other types of genetic variation, such as single nucleotide polymorphisms, genome size variation may be affected by ongoing hybridization and the extent of population subdivision. In addition to selection on associated traits, genome size is predicted to be affected indirectly by selection due to pleiotropy of the underlying presence/absence variants.


Assuntos
Euphrasia , Evolução Biológica , Variação Genética , Tamanho do Genoma , Genoma de Planta/genética , Hibridização Genética , Ploidias
7.
Mol Ecol Resour ; 21(6): 2050-2062, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33749162

RESUMO

DNA barcoding and metabarcoding provide new avenues for investigating biological systems. These techniques require well-curated reference libraries with extensive coverage. Generating an exhaustive national DNA barcode reference library can open up new avenues of research in ecology, evolution and conservation, yet few studies to date have created such a resource. In plant DNA barcoding, herbarium collections provide taxonomically robust material but also pose challenges in lab processing. Here, we present a national DNA barcoding resource covering all of the native flowering plants and conifers of the United Kingdom. This represents 1,482 plant species, with the majority of specimens (81%) sourced from herbaria. Using Sanger sequencing of the plant DNA barcode markers, rbcL, matK, and ITS2, at least one DNA barcode was retrieved from 98% of the UK flora. We sampled from multiple individuals, resulting in a species coverage for rbcL of 96% (4,477 sequences), 90% for matK (3,259 sequences) and 75% for ITS2 (2,585 sequences). Sequence recovery was lower for herbarium material compared to fresh collections, with the age of the specimen having a significant effect on the success of sequence recovery. Species level discrimination was highest with ITS2, however, the ability to successfully retrieve a sequence was lowest for this region. Analyses of the genetic distinctiveness of species across a complete flora showed DNA barcoding to be informative for all but the most taxonomically complex groups. The UK flora DNA barcode reference library provides an important resource for many applications that require plant identification from DNA.


Assuntos
Código de Barras de DNA Taxonômico , Magnoliopsida , Traqueófitas , DNA de Plantas/genética , Magnoliopsida/classificação , Magnoliopsida/genética , Traqueófitas/classificação , Traqueófitas/genética , Reino Unido
8.
Plant Commun ; 1(6): 100105, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33367265

RESUMO

Polyploidy is pervasive in angiosperm evolution and plays important roles in adaptation and speciation. However, polyploid groups are understudied due to complex sequence homology, challenging genome assembly, and taxonomic complexity. Here, we study adaptive divergence in taxonomically complex eyebrights (Euphrasia), where recent divergence, phenotypic plasticity, and hybridization blur species boundaries. We focus on three closely related tetraploid species with contrasting ecological preferences that are sympatric on Fair Isle, a small isolated island in the British Isles. Using a common garden experiment, we show a genetic component to the morphological differences present between these species. Using whole-genome sequencing and a novel k-mer approach we call "Tetmer", we demonstrate that the species are of allopolyploid origin, with a sub-genome divergence of approximately 5%. Using ∼2 million SNPs, we show sub-genome homology across species, with a very low sequence divergence characteristic of recent speciation. This genetic variation is broadly structured by species, with clear divergence of Fair Isle heathland Euphrasia micrantha, while grassland Euphrasia arctica and coastal Euphrasia foulaensis are more closely related. Overall, we show that tetraploid Euphrasia is a system of allopolyploids of postglacial species divergence, where adaptation to novel environments may be conferred by old variants rearranged into new genetic lineages.


Assuntos
Adaptação Biológica , Evolução Biológica , Ecossistema , Euphrasia/anatomia & histologia , Euphrasia/genética , Ilhas , Escócia , Especificidade da Espécie , Tetraploidia
9.
Am J Bot ; 107(3): 456-465, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32133624

RESUMO

PREMISE: Species delimitation in parasitic organisms is challenging because traits used to identify species are often plastic and vary depending on the host. Here, we use species from a recent radiation of generalist hemiparasitic Euphrasia to investigate trait variation and trait plasticity. We tested whether Euphrasia species show reliable trait differences, investigated whether these differences correspond to life history trade-offs between growth and reproduction, and quantified plasticity in response to host species. METHODS: Common garden experiments were used to evaluate trait differences between 11 Euphrasia taxa grown on a common host, document phenotypic plasticity when a single Euphrasia species is grown on eight different hosts, and relate observations to trait differences recorded in the wild. RESULTS: Euphrasia exhibited variation in life history strategies; some individuals transitioned rapidly to flowering at the expense of early season growth, while others invested in vegetative growth and delayed flowering. Life history differences were present between some species, though many related taxa lacked clear trait differences. Species differences were further blurred by phenotypic plasticity-many traits were plastic and changed with host type or between environments. CONCLUSIONS: Phenotypic plasticity in response to host and environment confounds species delimitation in Euphrasia. When grown in a common garden environment, some morphologically distinct taxa can be identified, though others represent morphologically similar shallow segregates. Trait differences present between some species and populations demonstrate the rapid evolution of distinct life history strategies in response to local ecological conditions.


Assuntos
Euphrasia , Adaptação Fisiológica , Fenótipo , Reprodução , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA